
Kevin D Moeller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4259947/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lessons from an Array: Using an Electrode Surface to Control the Selectivity of a Solutionâ€Phase Chemical Reaction. Angewandte Chemie - International Edition, 2022, 61, .	13.8	3
2	15 Paired Electrolysis. , 2022, , .		0
3	Organic Electrochemistry: Expanding the Scope of Paired Reactions. Angewandte Chemie, 2021, 133, 12993-13000.	2.0	5
4	Organic Electrochemistry: Expanding the Scope of Paired Reactions. Angewandte Chemie - International Edition, 2021, 60, 12883-12890.	13.8	44
5	Microelectrode Arrays, Dihydroxylation, and the Development of an Orthogonal Safety-Catch Linker. Organic Letters, 2021, 23, 5440-5444.	4.6	4
6	Anodic Olefin Coupling Reactions: Elucidating Radical Cation Mechanisms and the Interplay between Cyclization and Second Oxidation Steps. Chemical Record, 2021, 21, 2442-2452.	5.8	5
7	Capitalizing on Mediated Electrolyses for the Construction of Complex, Addressable Molecular Surfaces. Journal of Organic Chemistry, 2021, 86, 15847-15865.	3.2	4
8	Electrochemistry in Synthetic Organic Chemistry. Journal of Organic Chemistry, 2021, 86, 15845-15846.	3.2	14
9	From Molecules to Molecular Surfaces. Exploiting the Interplay Between Organic Synthesis and Electrochemistry. Accounts of Chemical Research, 2020, 53, 135-143.	15.6	85
10	Using a Combination of Electrochemical and Photoelectron Transfer Reactions to Gain New Insights into Oxidative Cyclization Reactions. Journal of the Electrochemical Society, 2020, 167, 155520.	2.9	4
11	Electroorganic Synthesis and the Construction of Addressable Molecular Surfaces. ChemElectroChem, 2019, 6, 4134-4143.	3.4	8
12	Paired Electrochemical Reactions and the Onâ€Site Generation of a Chemical Reagent. Angewandte Chemie - International Edition, 2019, 58, 3562-3565.	13.8	88
13	Anodic Cyclizations, Sevenâ€Membered Rings, and the Choice of Radical Cation vs. Radical Pathways. Chinese Journal of Chemistry, 2019, 37, 672-678.	4.9	7
14	Paired Electrochemical Reactions and the Onâ€6ite Generation of a Chemical Reagent. Angewandte Chemie, 2019, 131, 3600-3603.	2.0	35
15	Anti-hypertensive mechanisms of cyclic depsipeptide inhibitor ligands for Gq/11 class G proteins. Pharmacological Research, 2019, 141, 264-275.	7.1	18
16	Using Physical Organic Chemistry To Shape the Course of Electrochemical Reactions. Chemical Reviews, 2018, 118, 4817-4833.	47.7	512
17	Organic Electrochemistry and a Role Reversal: Using Synthesis To Optimize Electrochemical Methods. Journal of the American Chemical Society, 2018, 140, 7395-7398.	13.7	13
18	Introduction: Electrochemistry: Technology, Synthesis, Energy, and Materials. Chemical Reviews, 2018, 118, 4483-4484.	47.7	73

#	Article	IF	CITATIONS
19	Electrochemical synthesis of benzoxazoles from anilides $\hat{a} \in \hat{a}$ a new approach to employ amidyl radical intermediates. Chemical Communications, 2017, 53, 2974-2977.	4.1	90
20	Anodic Cyclization Reactions and the Mechanistic Strategies That Enable Optimization. Accounts of Chemical Research, 2017, 50, 2346-2352.	15.6	166
21	Insights into the Mechanism of Anodic N–N Bond Formation by Dehydrogenative Coupling. Journal of the American Chemical Society, 2017, 139, 12317-12324.	13.7	166
22	New Methods for the Site-Selective Placement of Peptides on a Microelectrode Array: Probing VEGF–v107 Binding as Proof of Concept. ACS Chemical Biology, 2016, 11, 2829-2837.	3.4	12
23	Considering organic mechanisms and the optimization of current flow in an electrochemical oxidative condensation reaction. Organic Chemistry Frontiers, 2016, 3, 1236-1240.	4.5	10
24	Câ€Glycosides, Arrayâ€based Addressable Libraries, and the Versatility of Constant Current Electrochemistry. Electroanalysis, 2016, 28, 2808-2817.	2.9	3
25	Paired Electrolysis in the Simultaneous Production of Synthetic Intermediates and Substrates. Journal of the American Chemical Society, 2016, 138, 15110-15113.	13.7	116
26	<scp>RGS</scp> 2 squelches vascular G _{i/o} and G _q signaling to modulate myogenic tone and promote uterine blood flow. Physiological Reports, 2016, 4, e12692.	1.7	17
27	Chemoselectivity and the Chan–Lam Coupling Reaction: Adding Amino Acids to Polymer-Coated Microelectrode Arrays. Journal of Organic Chemistry, 2016, 81, 1527-1534.	3.2	19
28	Practical Electrochemical Anodic Oxidation of Polycyclic Lactams for Late Stage Functionalization. Angewandte Chemie - International Edition, 2015, 54, 10555-10558.	13.8	74
29	Photovoltaic-driven organic electrosynthesis and efforts toward more sustainable oxidation reactions. Beilstein Journal of Organic Chemistry, 2015, 11, 280-287.	2.2	44
30	Competition studies and the relative reactivity of enol ether and allylsilane coupling partners toward ketene dithioacetal derived radical cations. Tetrahedron Letters, 2015, 56, 3595-3599.	1.4	12
31	Introduction to Microelectrode Arrays, the Site-Selective Functionalization of Electrode Surfaces, and the Real-Time Detection of Binding Events. Langmuir, 2015, 31, 7697-7706.	3.5	22
32	Photoredox Catalysts: Synthesis of the Bipyrazine Ligand. Journal of Organic Chemistry, 2015, 80, 2032-2035.	3.2	7
33	Toward the Selective Inhibition of G Proteins: Total Synthesis of a Simplified YM-254890 Analog. Organic Letters, 2015, 17, 2270-2273.	4.6	28
34	Solvolysis, Electrochemistry, and Development of Synthetic Building Blocks from Sawdust. Journal of Organic Chemistry, 2015, 80, 11953-11962.	3.2	42
35	Microelectrode Arrays and the Use of PEG-Functionalized Diblock Copolymer Coatings. Biosensors, 2014, 4, 318-328.	4.7	10
36	Sunlight, electrochemistry, and sustainable oxidation reactions. Green Chemistry, 2014, 16, 69-72.	9.0	95

#	Article	IF	CITATIONS
37	Microelectrode Arrays: A General Strategy for Using Oxidation Reactions To Site Selectively Modify Electrode Surfaces. Langmuir, 2014, 30, 2280-2286.	3.5	19
38	Electrochemically Generated Organometallic Reagents and Site-Selective Synthesis on a Microelectrode Array. Organometallics, 2014, 33, 4607-4616.	2.3	9
39	Cyclization Reactions of Anode-Generated Amidyl Radicals. Journal of Organic Chemistry, 2014, 79, 379-391.	3.2	100
40	Oxidative Cyclization Reactions: Controlling the Course of a Radical Cationâ€Derived Reaction with the Use of a Second Nucleophile. Angewandte Chemie - International Edition, 2013, 52, 12865-12868.	13.8	50
41	The Use of UV-Cross-Linkable Di-Block Copolymers as Functional Reaction Surfaces for Microelectrode Arrays. Journal of the Electrochemical Society, 2013, 160, G3020-G3029.	2.9	22
42	Oxidative Cyclizations, the Synthesis of Aryl-Substituted C-Glycosides, and the Role of the Second Electron Transfer Step. Organic Letters, 2013, 15, 5818-5821.	4.6	33
43	Anodic coupling of carboxylic acids to electron-rich double bonds: A surprising non-Kolbe pathway to lactones. Beilstein Journal of Organic Chemistry, 2013, 9, 1630-1636.	2.2	36
44	Investigating the Reactivity of Radical Cations: Experimental and Computational Insights into the Reactions of Radical Cations with Alcohol and <i>p</i> -Toluene Sulfonamide Nucleophiles. Journal of the American Chemical Society, 2012, 134, 18338-18344.	13.7	55
45	Site-Selective Chemistry and the Attachment of Peptides to the Surface of a Microelectrode Array. Journal of the American Chemical Society, 2012, 134, 16891-16898.	13.7	26
46	Building Addressable Libraries: Amino Acid Derived Fluorescent Linkers. Langmuir, 2012, 28, 1689-1693.	3.5	10
47	Connecting the dots: using sunlight to drive electrochemical oxidations. Green Chemistry, 2011, 13, 1652.	9.0	28
48	Site-Selectively Functionalizing Microelectrode Arrays: The Use of Cu(I)-Catalysts. Langmuir, 2011, 27, 11199-11205.	3.5	29
49	Anodic Coupling Reactions: Exploring the Generality of Curtinâ~'Hammett Controlled Reactions. Organic Letters, 2011, 13, 1678-1681.	4.6	38
50	Site-Selective, Cleavable Linkers: Quality Control and the Characterization of Small Molecules on Microelectrode Arrays. Journal of Organic Chemistry, 2011, 76, 9053-9059.	3.2	13
51	Intramolecular Anodic Olefin Coupling Reactions: Use of the Reaction Rate To Control Substrate/Product Selectivity. Angewandte Chemie - International Edition, 2010, 49, 8004-8007.	13.8	64
52	Intramolecular Anodic Olefin Coupling Reactions: Using Competition Studies to Probe the Mechanism of Oxidative Cyclization Reactions. Organic Letters, 2010, 12, 1720-1723.	4.6	20
53	Anodic Coupling Reactions and the Synthesis of C-Glycosides. Organic Letters, 2010, 12, 2590-2593.	4.6	52
54	Intramolecular Hydroamination of Dithioketene Acetals: An Easy Route To Cyclic Amino Acid Derivatives. Organic Letters, 2010, 12, 5174-5177.	4.6	11

#	Article	IF	CITATIONS
55	Building Addressable Libraries: The Use of "Safety-Catch―Linkers on Microelectrode Arrays. Journal of the American Chemical Society, 2010, 132, 17405-17407.	13.7	9
56	Intramolecular Anodic Olefin Coupling Reactions and the Synthesis of Cyclic Amines. Journal of the American Chemical Society, 2010, 132, 2839-2844.	13.7	116
57	Building Addressable Libraries: Site-Selective Use of Pd(0) Catalysts on Microelectrode Arrays. Journal of the American Chemical Society, 2010, 132, 16610-16616.	13.7	26
58	Intramolecular Anodic Olefin Coupling Reactions: Using Radical Cation Intermediates to Trigger New Umpolung Reactions. Synlett, 2009, 2009, 1208-1218.	1.8	89
59	Building Addressable Libraries: Site‣elective Lewis Acid (Scandium(III)) Catalyzed Reactions. Angewandte Chemie - International Edition, 2009, 48, 5872-5874.	13.8	27
60	Anodic oxidations and polarity: exploring the chemistry of olefinic radical cations. Tetrahedron, 2009, 65, 10863-10875.	1.9	52
61	Building Addressable Libraries: Site-Selective Suzuki Reactions on Microelectrode Arrays. Organic Letters, 2009, 11, 1273-1276.	4.6	34
62	A New Porous Reaction Layer for Developing Addressable Molecular Libraries. Journal of the American Chemical Society, 2009, 131, 16638-16639.	13.7	24
63	Building addressable libraries: a site-selective click-reaction strategy for rapidly assembling mass spectrometry cleavable linkers. Chemical Communications, 2009, , 5573.	4.1	28
64	Anodic cyclization reactions and the synthesis of (â^')-crobarbatic acid. Tetrahedron Letters, 2008, 49, 3868-3871.	1.4	42
65	Building addressable libraries: a site-selective allyl alkylation reaction. Tetrahedron Letters, 2008, 49, 5664-5667.	1.4	11
66	Intramolecular Anodic Olefin Coupling Reactions: The Use of a Nitrogen Trapping Group. Journal of the American Chemical Society, 2008, 130, 13542-13543.	13.7	134
67	Microelectrode Arrays and Ceric Ammonium Nitrate: A Simple Strategy for Developing New Site-Selective Synthetic Methods. Journal of the American Chemical Society, 2008, 130, 11290-11291.	13.7	34
68	Building Addressable Libraries: Site-Selective Formation of an <i>N</i> -Acyliminium Ion Intermediate. Organic Letters, 2008, 10, 2501-2504.	4.6	26
69	Moving Known Libraries to an Addressable Array: A Site-Selective Hetero-Michael Reaction. Bioconjugate Chemistry, 2008, 19, 1514-1517.	3.6	33
70	Anodic Coupling Reactions:  A Sequential Cyclization Route to the Arteannuin Ring Skeleton. Organic Letters, 2007, 9, 4599-4602.	4.6	55
71	Intramolecular Anodic Olefin Coupling Reactions:  The Effect of Polarization on Carbonâ^'Carbon Bond Formation. Journal of the American Chemical Society, 2007, 129, 12414-12415.	13.7	50
72	Building Functionalized Peptidomimetics:Â Use of Electroauxiliaries for IntroducingN-Acyliminium Ions into Peptides. Journal of the American Chemical Society, 2006, 128, 13761-13771.	13.7	78

#	Article	IF	CITATIONS
73	Building Addressable Libraries:  Site Selective Coumarin Synthesis and the "Real-Time―Signaling of Antibodyâ^'Coumarin Binding. Organic Letters, 2006, 8, 709-712.	4.6	37
74	Building Addressable Libraries:Â Spatially Isolated, Chip-Based Reductive Amination Reactions. Journal of the American Chemical Society, 2006, 128, 70-71.	13.7	38
75	Anodic cyclization reactions: probing the chemistry of N,O-ketene acetal derived radical cations. Tetrahedron, 2006, 62, 6536-6550.	1.9	30
76	Oxidative Cyclizations and the Synthesis of Lactones: A Streamlined Synthesis of epi-Crobarbatic Acid. Heterocycles, 2006, 67, 621.	0.7	8
77	Oxidative Cyclization Reactions:  Amide Trapping Groups and the Synthesis of Furanones. Organic Letters, 2005, 7, 3553-3556.	4.6	25
78	Electrochemically Assisted Heck Reactions. Organic Letters, 2005, 7, 5381-5383.	4.6	42
79	Building Addressable Libraries:Â The Use of Electrochemistry for Spatially Isolating a Heck Reaction on a Chip. Journal of the American Chemical Society, 2005, 127, 1392-1393.	13.7	46
80	Oxidative Cyclizations:Â The Asymmetric Synthesis of (â^')-Alliacol A. Journal of the American Chemical Society, 2004, 126, 9106-9111.	13.7	94
81	Building Addressable Libraries:Â The Use of Electrochemistry for Generating Reactive Pd(II) Reagents at Preselected Sites on a Chip. Journal of the American Chemical Society, 2004, 126, 6212-6213.	13.7	63
82	Constrained peptidomimetics: building bicyclic analogs of pyrazoline derivatives. Tetrahedron, 2003, 59, 8515-8523.	1.9	29
83	Anodic Cyclization Reactions:Â Capitalizing on an Intramolecular Electron Transfer to Trigger the Synthesis of a Key Tetrahydropyran Building Block. Journal of the American Chemical Society, 2002, 124, 9368-9369.	13.7	28
84	Oxidative Cyclization Based on Reversing the Polarity of Enol Ethers and Ketene Dithioacetals. Construction of a Tetrahydrofuran Ring and Application to the Synthesis of (+)-Nemorensic Acid. Journal of the American Chemical Society, 2002, 124, 10101-10111.	13.7	94
85	Anodic olefin coupling reactions involving ketene dithioacetals: evidence for a â€~radical-type' cyclization. Tetrahedron Letters, 2002, 43, 7159-7161.	1.4	23
86	Conformationally restricted TRH analogues. Bioorganic and Medicinal Chemistry, 2002, 10, 291-302.	3.0	24
87	Organic Electrochemistry as a Tool for Synthesis: Umpolung Reactions, Reactive Intermediates, and the Design of New Synthetic Methods. Electrochemical Society Interface, 2002, 11, 36-42.	0.4	56
88	Anodic Coupling Reactions:  Probing the Stereochemistry of Tetrahydrofuran Formation. A Short, Convenient Synthesis of Linalool Oxide. Organic Letters, 2001, 3, 2685-2688.	4.6	31
89	Anodic Cyclization Reactions:  Reversing the Polarity of Ketene Dithioacetal Groups. Organic Letters, 2001, 3, 1729-1732.	4.6	29
90	Anodic oxidations of electron-rich olefins: radical cation based approaches to the synthesis of bridged bicyclic ring skeletons. Tetrahedron, 2001, 57, 5183-5197.	1.9	39

#	Article	IF	CITATIONS
91	Building constrained peptidomimetics: a convenient approach to 3-phenyl-5-vinyl substituted proline derivatives. Tetrahedron, 2001, 57, 6407-6415.	1.9	17
92	Synthetic Applications of Anodic Electrochemistry. Tetrahedron, 2000, 56, 9527-9554.	1.9	468
93	Anodic Amide Oxidation/Olefin Metathesis Strategies: Developing a Unified Approach to the Synthesis of Bicyclic Lactam Peptidomimetics. Tetrahedron, 2000, 56, 10113-10125.	1.9	67
94	Constrained Peptidomimetics for TRH: cis-Peptide Bond Analogs. Tetrahedron, 2000, 56, 9791-9800.	1.9	37
95	Reversing the Polarity of Enol Ethers:Â An Anodic Route to Tetrahydrofuran and Tetrahydropyran Rings. Journal of the American Chemical Society, 2000, 122, 5636-5637.	13.7	66
96	Conformationally Constrained Substance P Analogues:Â The Total Synthesis of a Constrained Peptidomimetic for the Phe7-Phe8Region. Journal of Organic Chemistry, 2000, 65, 2484-2493.	3.2	68
97	The Synthesis of Bicyclic Piperazinone and Related Derivatives. , 1999, 23, 259-280.		6
98	Intramolecular Anodic Olefin Coupling Reactions:  The Use of Allylsilane Coupling Partners with Allylic Alkoxy Groups. Journal of Organic Chemistry, 1999, 64, 2805-2813.	3.2	37
99	Conformationally Constrained Peptide Mimetics:Â The Use of a Small Lactam Ring as an HIV-1 Antigen Constraint. Journal of the American Chemical Society, 1997, 119, 12394-12395.	13.7	21
100	Conformational Studies and Stereochemical Assignment of a Bicyclic Lactam-Containing Peptide Fragment by Two-Dimensional NMR Spectroscopy. Magnetic Resonance in Chemistry, 1997, 35, 267-272.	1.9	3
101	Intramolecular carbon-carbon bond forming reactions at the anode. Topics in Current Chemistry, 1997, , 49-86.	4.0	34
102	Intramolecular Anodic Olefin Coupling Reactions and the Use of Electron-Rich Aryl Rings1. Journal of Organic Chemistry, 1996, 61, 1578-1598.	3.2	55
103	Conformationally Restricted TRH Analogs:Â A Probe for the Pyroglutamate Region. Journal of Medicinal Chemistry, 1996, 39, 1571-1574.	6.4	34
104	Conformationally Restricted TRH Analogs:Â The Compatibility of a 6,5-Bicyclic Lactam-Based Mimetic with Binding to TRH-R. Journal of the American Chemical Society, 1996, 118, 10106-10112.	13.7	56
105	Anodic electrochemistry and the use of a 6-volt lantern battery: A simple method for attempting electrochemically based synthetic transformations. Tetrahedron Letters, 1996, 37, 8317-8320.	1.4	63
106	APPLICATION OF HMBC AND HMQC-TOCSY NMR METHODS TO ASSIGN THE STRUCTURES OF BICYCLIC-PEPTIDE MIMETICS. Journal of Coordination Chemistry, 1994, 32, 135-144.	2.2	2
107	Intramolecular Anodic Olefin Coupling Reactions and the Use of Vinylsilanes. Journal of the American Chemical Society, 1994, 116, 3347-3356.	13.7	39
108	Intramolecular Anodic Olefin Coupling Reactions: A New Approach to the Synthesis of Angularly Fused, Tricyclic Enones. Journal of Organic Chemistry, 1994, 59, 2381-2389.	3.2	30

#	ARTICLE	IF	CITATIONS
109	Intramolecular anodic olefin coupling reactions: the use of allyl- and vinylsilanes in the construction of quaternary carbons. Journal of Organic Chemistry, 1993, 58, 3478-3479.	3.2	19
110	Anodic amide oxidations: the synthesis of two spirocyclic L-pyroglutamide building blocks. Journal of Organic Chemistry, 1992, 57, 6360-6363.	3.2	40
111	Intramolecular anodic olefin coupling reactions: the use of bis enol ether substrates. Journal of the American Chemical Society, 1992, 114, 1033-1041.	13.7	75
112	Anodic amide oxidations in the presence of electron-rich phenyl rings: evidence for an intramolecular electron-transfer mechanism. Journal of Organic Chemistry, 1991, 56, 1058-1067.	3.2	42
113	Intramolecular anodic olefin coupling reactions: a useful method for carbon-carbon bond formation. Journal of the American Chemical Society, 1991, 113, 7372-7385.	13.7	69
114	Lessons from an Array: Using an Electrode Surface to Control the Selectivity of a Solutionâ€Phase Chemical Reaction. Angewandte Chemie, 0, , .	2.0	0
115	Building Chemical Probes based on the Natural Products YM-254890 and FR900359: Advances Toward Scalability. Synthesis, 0, , .	2.3	0