
Eduardo F Marques

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4259626/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polymer/surfactant mixtures as dispersants and non-covalent functionalization agents of multiwalled carbon nanotubes: Synergism, morphological characterization and molecular picture. Journal of Molecular Liquids, 2022, 347, 118338.	4.9	13
2	Drugâ€Derived Surfaceâ€Active Ionic Liquids: A Costâ€Effective Way To Expressively Increase the Bloodâ€Stage Antimalarial Activity of Primaquine. ChemMedChem, 2022, 17, .	3.2	6
3	Combining metal nanoclusters and carbon nanomaterials: Opportunities and challenges in advanced nanohybrids. Advances in Colloid and Interface Science, 2022, 304, 102667.	14.7	16
4	A critical assessment of the role of ionic surfactants in the exfoliation and stabilization of 2D nanosheets: The case of the transition metal dichalcogenides MoS2, WS2 and MoSe2. Journal of Colloid and Interface Science, 2022, 626, 167-177.	9.4	11
5	Effective cytocompatible nanovectors based on serine-derived gemini surfactants and monoolein for small interfering RNA delivery. Journal of Colloid and Interface Science, 2021, 584, 34-44.	9.4	12
6	Biocompatible thermosensitive nanostructures and hydrogels of an amino acid-derived surfactant and hydroxyethyl cellulose polymers. Journal of Molecular Liquids, 2021, 322, 114540.	4.9	6
7	Stimuliâ€Sensitive Selfâ€Assembled Tubules Based on Lysineâ€Derived Surfactants for Delivery of Antimicrobial Proteins. Chemistry - A European Journal, 2021, 27, 692-704.	3.3	3
8	Formation of catanionic vesicles by threonine-derived surfactants and gemini surfactants based on conventional or serine-derived headgroups: designing versatile and cytocompatible nanocarriers. Soft Matter, 2021, 17, 7099-7110.	2.7	6
9	Nanocomposites Prepared from Carbon Nanotubes and the Transition Metal Dichalcogenides WS2 and MoS2 via Surfactant-Assisted Dispersions as Electrocatalysts for Oxygen Reactions. Materials, 2021, 14, 896.	2.9	14
10	Surfing the Third Wave of Ionic Liquids: A Brief Review on the Role of Surfaceâ€Active Ionic Liquids in Drug Development and Delivery. ChemMedChem, 2021, 16, 2604-2611.	3.2	19
11	Comparative trends and molecular analysis on the surfactant-assisted dispersibility of 1D and 2D carbon materials: Multiwalled nanotubes vs graphene nanoplatelets. Journal of Molecular Liquids, 2021, 333, 116002.	4.9	9
12	Carbon nanotube/graphene nanocomposites built via surfactant-mediated colloid assembly as metal-free catalysts for the oxygen reduction reaction. Journal of Materials Science, 2021, 56, 19512-19527.	3.7	6
13	Enhancing the dispersibility of multiwalled carbon nanotubes within starch-based films by the use of ionic surfactants. Carbohydrate Polymers, 2021, 273, 118531.	10.2	11
14	Influence of the media ionic strength on the formation and in vitro biological performance of polycation-DNA complexes. Journal of Molecular Liquids, 2021, 344, 117930.	4.9	2
15	Building on Surface-Active Ionic Liquids for the Rescuing of the Antimalarial Drug Chloroquine. International Journal of Molecular Sciences, 2020, 21, 5334.	4.1	17
16	Textile Industry in a Changing World. U Porto Journal of Engineering, 2020, 6, 86-97.	0.4	17
17	Surface charge tunable catanionic vesicles based on serine-derived surfactants as efficient nanocarriers for the delivery of the anticancer drug doxorubicin. Nanoscale, 2019, 11, 5932-5941.	5.6	36
18	From single gemini surfactants in water to catanionic mixtures with the bile salt sodium taurodeoxycholate: Extensive micellar solutions, coacervation and liquid crystal polymorphism as	4.9	7

revealed bý phase behavior studies. Journal of Molecular Liquids, 2019, 285, 330-337.

Eduardo F Marques

#	Article	IF	CITATIONS
19	Gemini surfactants as efficient dispersants of multiwalled carbon nanotubes: Interplay of molecular parameters on nanotube dispersibility and debundling. Journal of Colloid and Interface Science, 2019, 547, 69-77.	9.4	32
20	Temperature-responsive self-assembled nanostructures from lysine-based surfactants with high chain length asymmetry: from tubules and helical ribbons to micelles and vesicles. Soft Matter, 2019, 15, 3700-3711.	2.7	19
21	Modeling of ultra-small lipid nanoparticle surface charge for targeting glioblastoma. European Journal of Pharmaceutical Sciences, 2018, 117, 255-269.	4.0	33
22	Dispersing Carbon Nanotubes in Water with Amphiphiles: Dispersant Adsorption, Kinetics, and Bundle Size Distribution as Defining Factors. Journal of Physical Chemistry C, 2018, 122, 24386-24393.	3.1	19
23	Block Copolymers as Dispersants for Single-Walled Carbon Nanotubes: Modes of Surface Attachment and Role of Block Polydispersity. Langmuir, 2018, 34, 13672-13679.	3.5	23
24	Mechanical agitation induces counterintuitive aggregation of pre-dispersed carbon nanotubes. Journal of Colloid and Interface Science, 2017, 493, 398-404.	9.4	9
25	Critical Role of the Spacer Length of Gemini Surfactants on the Formation of Ionic Liquid Crystals and Thermotropic Behavior. Journal of Physical Chemistry B, 2017, 121, 10583-10592.	2.6	17
26	Impact of Surface Active Ionic Liquids on the Cloud Points of Nonionic Surfactants and the Formation of Aqueous Micellar Two-Phase Systems. Journal of Physical Chemistry B, 2017, 121, 8742-8755.	2.6	45
27	Interplay between bulk self-assembly, interfacial and foaming properties in a catanionic surfactant mixture of varying composition. Soft Matter, 2017, 13, 7197-7206.	2.7	26
28	Gene delivery mediated by gemini surfactants. , 2016, , 227-256.		1
29	Acylated-naproxen as the surface-active template in the preparation of micro- and nanospherical imprinted xerogels by emulsion techniques. Journal of Chromatography A, 2016, 1437, 107-115.	3.7	3
30	Enhancing glioblastoma cell sensitivity to chemotherapeutics: A strategy involving survivin gene silencing mediated by gemini surfactant-based complexes. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 104, 7-18.	4.3	16
31	Phase behavior, microstructure and cytotoxicity in mixtures of a charged triblock copolymer and an ionic surfactant. European Polymer Journal, 2016, 75, 461-473.	5.4	6
32	Supramolecular self-assembly between an amino acid-based surfactant and a sulfonatocalixarene driven by electrostatic interactions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 480, 71-78.	4.7	16
33	Gemini Surfactants Mediate Efficient Mitochondrial Gene Delivery and Expression. Molecular	4.6	52
	Pharmaceutics, 2015, 12, 716-730.		
34	Pharmaceutics, 2015, 12, 716-730. Size, Charge, and Stability of Fully Serineâ€Based Catanionic Vesicles: Towards Versatile Biocompatible Nanocarriers. Chemistry - A European Journal, 2015, 21, 4092-4101.	3.3	26
34 35	Size, Charge, and Stability of Fully Serineâ€Based Catanionic Vesicles: Towards Versatile Biocompatible		

Eduardo F Marques

#	Article	IF	CITATIONS
37	Dispersing Carbon Nanotubes with Ionic Surfactants under Controlled Conditions: Comparisons and Insight. Langmuir, 2015, 31, 10955-10965.	3.5	86
38	Surface Coverage and Competitive Adsorption on Carbon Nanotubes. Journal of Physical Chemistry C, 2015, 119, 22190-22197.	3.1	19
39	Lysine-based surfactants as chemical permeation enhancers for dermal delivery of local anesthetics. International Journal of Pharmaceutics, 2014, 474, 212-222.	5.2	18
40	Serine-based gemini surfactants with different spacer linkages: from self-assembly to DNA compaction. Soft Matter, 2014, 10, 9352-9361.	2.7	31
41	Bis-quaternary gemini surfactants as components of nonviral gene delivery systems: A comprehensive study from physicochemical properties to membrane interactions. International Journal of Pharmaceutics, 2014, 474, 57-69.	5.2	34
42	Lateral Diffusion of Dispersing Molecules on Nanotubes As Probed by NMR. Journal of Physical Chemistry C, 2014, 118, 582-589.	3.1	20
43	Morphological and Nanomechanical Behavior of Supported Lipid Bilayers on Addition of Cationic Surfactants. Langmuir, 2013, 29, 9352-9361.	3.5	24
44	Surfactants, Phase Behavior. , 2013, , 1290-1333.		4
45	Morphology, Thermal Behavior, and Stability of Self-Assembled Supramolecular Tubules from Lysine-Based Surfactants. Journal of Physical Chemistry B, 2013, 117, 9400-9411.	2.6	20
46	Structure Activity Relationships in Alkylammonium C12-Gemini Surfactants Used as Dermal Permeation Enhancers. AAPS Journal, 2013, 15, 1119-1127.	4.4	19
47	Synthesis of glycylglycine-imprinted silica microspheres through different water-in-oil emulsion techniques. Journal of Chromatography A, 2013, 1297, 138-145.	3.7	9
48	Chain length mismatch and packing effects on the thermotropic phase behavior of salt-free catanionic surfactants. Journal of Colloid and Interface Science, 2013, 405, 134-144.	9.4	17
49	Self-Aggregation Properties of Ionic Liquid 1,3-Didecyl-2-methylimidazolium Chloride in Aqueous Solution: From Spheres to Cylinders to Bilayers. Journal of Physical Chemistry B, 2013, 117, 2926-2937.	2.6	46
50	Synthesis of Gemini Surfactants and Evaluation of Their Interfacial and Cytotoxic Properties: Exploring the Multifunctionality of Serine as Headgroup. European Journal of Organic Chemistry, 2013, 2013, 1758-1769.	2.4	42
51	In vitro cytotoxicity of a thermoresponsive gel system combining ethyl(hydroxyethyl) cellulose and lysine-based surfactants. Colloids and Surfaces B: Biointerfaces, 2013, 102, 682-686.	5.0	24
52	Surfactant Self-Assembly. , 2013, , 1202-1241.		9
53	Unusual Phase Behavior in a Two-Component System Catanionic Surfactant-Water: From Lamellar-Lamellar to Vesicle-Micelle Coexistence. Statistical Science and Interdisciplinary Research, 2012, , 69-84.	0.0	0
54	Interactions between ethyl(hydroxyethyl) cellulose and lysine-based surfactants in aqueous media. European Polymer Journal, 2012, 48, 1622-1631.	5.4	12

#	Article	IF	CITATIONS
55	Aggregation behavior of aqueous dioctadecyldimethylammonium bromide/monoolein mixtures: A multitechnique investigation on the influence of composition and temperature. Journal of Colloid and Interface Science, 2012, 374, 206-217.	9.4	29
56	Serineâ€Based Bisâ€quat Gemini Surfactants: Synthesis and Micellization Properties. European Journal of Organic Chemistry, 2012, 2012, 345-352.	2.4	32
57	Structure and order of DODAB bilayers modulated by dicationic gemini surfactants. Physical Chemistry Chemical Physics, 2011, 13, 13772.	2.8	17
58	Fusion and fission of catanionic bilayers. Soft Matter, 2011, 7, 1686.	2.7	6
59	Aqueous phase behavior of salt-free catanionic surfactants: the influence of solubility mismatch on spontaneous curvature and balance of forces. Soft Matter, 2011, 7, 225-236.	2.7	38
60	Gemini surfactant dimethylene-1,2-bis(tetradecyldimethylammonium bromide)-based gene vectors: A biophysical approach to transfection efficiency. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 341-351.	2.6	42
61	Formation of solid organic nanoparticles from a volatile catanionic microemulsion. Soft Matter, 2011, 7, 9359.	2.7	12
62	Enhanced interfacial properties of novel amino acid-derived surfactants: Effects of headgroup chemistry and of alkyl chain length and unsaturation. Colloids and Surfaces B: Biointerfaces, 2011, 86, 65-70.	5.0	42
63	Dicationic Alkylammonium Bromide Gemini Surfactants. Membrane Perturbation and Skin Irritation. PLoS ONE, 2011, 6, e26965.	2.5	41
64	Mesophase formation and thermal behavior of catanionic mixtures of gemini surfactants with sodium alkylsulfates. Journal of Thermal Analysis and Calorimetry, 2010, 100, 501-508.	3.6	10
65	Micellization behavior of a catanionic surfactant with high solubility mismatch: Composition, temperature, and salt effects. Journal of Molecular Liquids, 2010, 157, 113-118.	4.9	27
66	Headgroup Effects on the Unusual Lamellarâ^'Lamellar Coexistence and Vesicle-to-Micelle Transition of Salt-Free Catanionic Amphiphiles. Langmuir, 2010, 26, 3058-3066.	3.5	39
67	Absence of Lateral Phase Segregation in Fatty Acid-Based Catanionic Mixtures. Journal of Physical Chemistry B, 2010, 114, 1932-1938.	2.6	26
68	The effect of cationic gemini surfactants upon lipid membranes. An experimental and molecular dynamics simulation study. Physical Chemistry Chemical Physics, 2010, 12, 14462.	2.8	41
69	Novel catanionic vesicles from calixarene and single-chain surfactant. Chemical Communications, 2010, 46, 6551.	4.1	71
70	Physicochemical and toxicological properties of novel amino acid-based amphiphiles and their spontaneously formed catanionic vesicles. Colloids and Surfaces B: Biointerfaces, 2009, 72, 80-87.	5.0	59
71	Towards novel efficient monomeric surfactants based on serine, tyrosine and 4-hydroxyproline: synthesis and micellization properties. Tetrahedron, 2009, 65, 4156-4164.	1.9	28
72	Polymer–vesicle association. Advances in Colloid and Interface Science, 2009, 147-148, 18-35.	14.7	106

#	Article	IF	CITATIONS
73	Size, Shape, and Charge of Salt-Free Catanionic Microemulsion Droplets: A Small-Angle Neutron Scattering and Modeling Study. Journal of Physical Chemistry B, 2009, 113, 10230-10239.	2.6	21
74	Unravelling micellar structure and dynamics in an unusually extensive DDAB/bile salt catanionic solution by rheology and NMR-diffusometry. Journal of Colloid and Interface Science, 2008, 324, 192-198.	9.4	18
75	Monolayers of gemini surfactants and their catanionic mixtures with sodium dodecyl sulfate at the air–water interface: Chain length and composition effects. Thin Solid Films, 2008, 516, 7458-7466.	1.8	29
76	Non-ideal behavior of mixed micelles of cationic gemini surfactants with varying spacer length and anionic surfactants: A conductimetric study. Journal of Molecular Liquids, 2008, 142, 136-142.	4.9	47
77	Spontaneous Vesicle Formation in Catanionic Mixtures of Amino Acid-Based Surfactants: Chain Length Symmetry Effects. Langmuir, 2008, 24, 11009-11017.	3.5	58
78	Straightforward Method for the Preparation of Lysine-Based Double-Chained Anionic Surfactants. Synthetic Communications, 2008, 38, 2025-2036.	2.1	14
79	Structure/Property Relationships for the Thermotropic Behavior of Lysine-Based Amphiphiles: from Hexagonal to Smectic Phases. Journal of Physical Chemistry B, 2008, 112, 14877-14887.	2.6	19
80	Unusual Vesicleâ^'Micelle Transitions in a Salt-Free Catanionic Surfactant: Temperature and Concentration Effects. Langmuir, 2008, 24, 10746-10754.	3.5	73
81	Interactions between Gemini Surfactants and Polymers:Â Thermodynamic Studies. Langmuir, 2007, 23, 5963-5970.	3.5	30
82	Interplay of Electrostatic and Hydrophobic Effects with Binding of Cationic Gemini Surfactants and a Conjugated Polyanion:Â Experimental and Molecular Modeling Studies. Journal of Physical Chemistry B, 2007, 111, 4401-4410.	2.6	68
83	Lamellar Miscibility Gap in a Binary Catanionic Surfactantâ^'Water System. Journal of Physical Chemistry B, 2007, 111, 13520-13526.	2.6	27
84	Mechanisms behind the Faceting of Catanionic Vesicles by Polycations:Â Chain Crystallization and Segregation. Journal of Physical Chemistry B, 2007, 111, 116-123.	2.6	35
85	Thermotropic Phase Behavior of Cationic Gemini Surfactants and Their Equicharge Mixtures with Sodium Dodecyl Sulfate. Journal of Physical Chemistry B, 2006, 110, 1151-1157.	2.6	37
86	Self-Assembly in a Catanionic Mixture with an Aminoacid-Derived Surfactant:Â From Mixed Micelles to Spontaneous Vesicles. Journal of Physical Chemistry B, 2006, 110, 18158-18165.	2.6	60
87	Phase Behavior and Thermodynamics of a Mixture of Cationic Gemini and Anionic Surfactant. Journal of Physical Chemistry B, 2006, 110, 5294-5300.	2.6	41
88	Thermotropic phase behavior of triple-chained catanionic surfactants with varying headgroup chemistry. Journal of Colloid and Interface Science, 2006, 294, 240-247.	9.4	36
89	Catanionic surfactant films at the air–water interface. Thin Solid Films, 2006, 515, 2031-2037.	1.8	18
90	Neat DODAB vesicles: Effect of sonication time on the phase transition thermodynamic parameters and its relation with incomplete chain freezing. Chemistry and Physics of Lipids, 2005, 137, 18-28.	3.2	50

EDUARDO F MARQUES

#	Article	IF	CITATIONS
91	Phase equilibria of the mixed didodecyldimethylammonium bromide–sodium taurodeoxycholate–water system with a large solution region. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 269, 87-95.	4.7	8
92	Thermotropic behavior of asymmetric chain length catanionic surfactants: The influence of the polar head group. Journal of Colloid and Interface Science, 2005, 290, 267-274.	9.4	59
93	Network Formation of Catanionic Vesicles and Oppositely Charged Polyelectrolytes. Effect of Polymer Charge Density and Hydrophobic Modification. Langmuir, 2004, 20, 4647-4656.	3.5	80
94	Bile salts form lyotropic liquid crystals. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 213, 79-92.	4.7	25
95	Self-organization of double-chained and pseudodouble-chained surfactants: counterion and geometry effects. Advances in Colloid and Interface Science, 2003, 100-102, 83-104.	14.7	148
96	A calorimetric study of the gel-to-liquid crystal transition in catanionic surfactant vesicles. Thermochimica Acta, 2002, 394, 31-37.	2.7	46
97	Effect of a bile salt on the aggregation behavior of a double-chained cationic surfactant - the cationic-rich dilute region of the didodecyldimethylammonium bromide-sodium taurodeoxycholate-water system. , 2002, , 83-91.		10
98	Liquid Crystals and Phase Equilibria Binary Bile Salt-Water Systems. Langmuir, 2000, 16, 5178-5186.	3.5	59
99	Micelles, Dispersions, and Liquid Crystals in the Catanionic Mixture Bile Saltâ^'Double-Chained Surfactant. The Bile Salt-Rich Area. Langmuir, 2000, 16, 8255-8262.	3.5	38
100	Size and Stability of Catanionic Vesicles:Â Effects of Formation Path, Sonication, and Aging. Langmuir, 2000, 16, 4798-4807.	3.5	158
101	Synergism and polymorphism in mixed surfactant systems. Current Opinion in Colloid and Interface Science, 1999, 4, 402-410.	7.4	177
102	DNA conformational dynamics in the presence of catanionic mixtures. FEBS Letters, 1999, 453, 113-118.	2.8	79
103	Vesicle Formation and General Phase Behavior in the Catanionic Mixture SDSâ^'DDABâ^'Water. The Cationic-Rich Side. Journal of Physical Chemistry B, 1999, 103, 8353-8363.	2.6	153
104	Interactions between Catanionic Vesicles and Oppositely Charged PolyelectrolytesPhase Behavior and Phase Structure. Macromolecules, 1999, 32, 6626-6637.	4.8	107
105	Polymer-Induced Structural Effects on Catanionic Vesicles: Formation of Faceted Vesicles, Disks, and Cross-links. Langmuir, 1999, 15, 642-645.	3.5	49
106	The structure and thermal behaviour of some long chain cerium(III) carboxylates. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 1729-1736.	1.7	85
107	Vesicle Formation and General Phase Behavior in the Catanionic Mixture SDSâ^'DDABâ^'Water. The Anionic-Rich Side. Journal of Physical Chemistry B, 1998, 102, 6746-6758.	2.6	236

#	Article	IF	CITATIONS
109	Self-assembly in mixtures of a cationic and an anionic surfactant: the sodium dodecyl sulfate-didodecyldimethylammonium bromide-water system. The Journal of Physical Chemistry, 1993, 97, 4729-4736.	2.9	202
110	Phase behavior of polymer-surfactant systems in relation to polymer-polymer and surfactant-surfactant mixtures. Pure and Applied Chemistry, 1993, 65, 953-958.	1.9	35