David M Stanbury

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4259616/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Autoxidation kinetics of aqueous nitric oxide. FEBS Letters, 1993, 326, 1-3.	1.3	377

 $_{2}$ Standard electrode potentials involving radicals in aqueous solution: inorganic radicals (IUPAC) Tj ETQq0 0 0 rgBT / $_{0.9}$ erlock $_{10.1}^{10}$ Tf 50 70

3	Autoxidation of NO in aqueous solution. International Journal of Chemical Kinetics, 1993, 25, 375-381.	1.0	118
4	Standard electrode potentials involving radicals in aqueous solution: inorganic radicals. Bioinorganic Reaction Mechanisms, 2013, 9, .	0.5	48
5	Thiocyanogen as an Intermediate in the Oxidation of Thiocyanate by Hydrogen Peroxide in Acidic Aqueous Solution. Inorganic Chemistry, 2000, 39, 5089-5094.	1.9	45
6	Kinetics and mechanism of oxidation of thioglycolic acid by hexachloroiridate(iv). Dalton Transactions RSC, 2002, , 785.	2.3	27
7	Oxidation of Coordinated Ammonia to Nitrosyl in the Reaction of Aqueous Chlorine with cis-[Ru(bpy)2(NH3)2]2+. Journal of the American Chemical Society, 1997, 119, 521-530.	6.6	25
8	Kinetics and a Revised Mechanism for the Autocatalytic Oxidation of SCN-by ClO2. Journal of Physical Chemistry A, 1999, 103, 5732-5741.	1.1	25
9	Mechanisms of Advanced Oxidation Processes, the Principle of Detailed Balancing, and Specifics of the UV/Chloramine Process. Environmental Science & amp; Technology, 2020, 54, 4658-4663.	4.6	25
10	Reactions of the tris(3,4,7,8-tetramethylphenanthroline)iron(II,III) redox couple in nitrous acid. Journal of the American Chemical Society, 1984, 106, 8136-8142.	6.6	23
11	Vanishingly slow kinetics of the ClO2/Clâ^ reaction: its questionable significance in nonlinear chlorite reactions. Coordination Chemistry Reviews, 1999, 187, 223-232.	9.5	23
12	Thermal and Photochemical Reduction of Aqueous Chlorine by Ruthenium(II) Polypyridyl Complexes. Inorganic Chemistry, 2000, 39, 1294-1300.	1.9	18
13	The principle of detailed balancing, the iron-catalyzed disproportionation of hydrogen peroxide, and the Fenton reaction. Dalton Transactions, 2022, 51, 2135-2157.	1.6	17
14	Nuclear Factors in Main-Group Electron Transfer Reactions. Advances in Chemistry Series, 1997, , 165-182.	0.6	15
15	Oxidations at Sulfur Centers by Aqueous Hypochlorous Acid and Hypochlorite: Cl ⁺ Versus O Atom Transfer. Inorganic Chemistry, 2017, 56, 4047-4056.	1.9	15
16	Oxidation of Hydrazine in Aqueous Solution. Progress in Inorganic Chemistry, 0, , 511-561.	3.0	13
17	Kinetics of the Initial Steps in the Aqueous Oxidation of Thiosulfate by Chlorine Dioxide. Journal of Physical Chemistry A, 2014, 118, 6827-6831.	1.1	11
18	Copper Catalysis of the Oxidation of Iodide by [FeIII(bpy)2(CN)2]+in Acetonitrile. Journal of Physical Chemistry A, 2004, 108, 7637-7638.	1.1	10

DAVID M STANBURY

#	Article	IF	CITATIONS
19	The H•/H [–] Redox Couple and Absolute Hydration Energy of H [–] . Journal of Physical Chemistry A, 2020, 124, 6084-6095.	1.1	10
20	One-Electron Oxidation of Hydrogen Sulfide by a Stable Oxidant: Hexachloroiridate(IV). Inorganic Chemistry, 2016, 55, 7797-7803.	1.9	9
21	Systematic Application of the Principle of Detailed Balancing to Complex Homogeneous Chemical Reaction Mechanisms. Journal of Physical Chemistry A, 2019, 123, 5436-5445.	1.1	8
22	Kinetics of the Benzaldehyde-Inhibited Oxidation of Sulfite by Chlorine Dioxide. Inorganic Chemistry, 2016, 55, 366-370.	1.9	6
23	Comment on the Principle of Detailed Balancing in Complex Mechanisms and Its Application to Iodate Reactions. Journal of Physical Chemistry A, 2018, 122, 3956-3957.	1.1	6
24	Large-Scale Models of Radiation Chemistry and the Principle of Detailed Balancing. Journal of Physical Chemistry A, 2019, 123, 10240-10245.	1.1	5
25	Oxidation of [Ru(NH3)5isn](BF4)2by Hypochlorous Acid and Chlorine in Aqueous Acidic Media. Inorganic Chemistry, 2001, 40, 5139-5146.	1.9	4
26	Methanesulfonyl lodide. Inorganic Chemistry, 2019, 58, 14752-14759.	1.9	4
27	Comment on "Buffer Effects in the Kinetics of Concerted Proton-Coupled Electron Transfer: The Electrochemical Oxidation of Clutathione Mediated by [IrCl6]2– at Variable Buffer pKa and Concentration― Journal of Physical Chemistry C, 2014, 118, 740-742.	1.5	3
28	Hydration Energies and Reactivity of the Hypohalite Anions. Inorganic Chemistry, 2018, 57, 1665-1669.	1.9	3
29	Misconceptions about the Chemistry of Aqueous Chlorine Atoms and HClOH [•] (aq), and a Revised Mechanism for the Photochemical Peroxydisulfate/Chloride Reaction. Physical Chemistry Chemical Physics, 2022, , .	1.3	2