
Carmen Guerra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4258736/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Soluble AXL is a novel blood marker for early detection of pancreatic ductal adenocarcinoma and differential diagnosis from chronic pancreatitis. EBioMedicine, 2022, 75, 103797.	2.7	20
2	Combined Inhibition of FOSL-1 and YAP Using siRNA-Lipoplexes Reduces the Growth of Pancreatic Tumor. Cancers, 2022, 14, 3102.	1.7	4
3	Dynamic Regulation of Expression of KRAS and Its Effectors Determines the Ability to Initiate Tumorigenesis in Pancreatic Acinar Cells. Cancer Research, 2021, 81, 2679-2689.	0.4	11
4	RAF1 kinase activity is dispensable for KRAS/p53 mutant lung tumor progression. Cancer Cell, 2021, 39, 294-296.	7.7	18
5	KRAS4A induces metastatic lung adenocarcinomas in vivo in the absence of the KRAS4B isoform. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	9
6	Tumor regression and resistance mechanisms upon CDK4 and RAF1 inactivation in KRAS/P53 mutant lung adenocarcinomas. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24415-24426.	3.3	15
7	Pancreatic Ductal Deletion of Hnf1b Disrupts Exocrine Homeostasis, Leads to Pancreatitis, and Facilitates Tumorigenesis. Cellular and Molecular Gastroenterology and Hepatology, 2019, 8, 487-511.	2.3	26
8	Complete Regression of Advanced Pancreatic Ductal Adenocarcinomas upon Combined Inhibition of EGFR and C-RAF. Cancer Cell, 2019, 35, 573-587.e6.	7.7	75
9	Targeting galectin-1 inhibits pancreatic cancer progression by modulating tumor–stroma crosstalk. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3769-E3778.	3.3	114
10	c-RAF Ablation Induces Regression of Advanced Kras/Trp53 Mutant Lung Adenocarcinomas by a Mechanism Independent of MAPK Signaling. Cancer Cell, 2018, 33, 217-228.e4.	7.7	93
11	Saa3 is a key mediator of the protumorigenic properties of cancer-associated fibroblasts in pancreatic tumors. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1147-E1156.	3.3	128
12	Genetically Engineered Mouse Models of K-Ras-Driven Lung and Pancreatic Tumors: Validation of Therapeutic Targets. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a031542.	2.9	19
13	Common Telomere Changes during InÂVivo Reprogramming and Early Stages of Tumorigenesis. Stem Cell Reports, 2017, 8, 460-475.	2.3	33
14	Modeling RASopathies with Genetically Modified Mouse Models. Methods in Molecular Biology, 2017, 1487, 379-408.	0.4	13
15	Noonan syndrome: lessons learned from genetically modified mouse models. Expert Review of Endocrinology and Metabolism, 2017, 12, 367-378.	1.2	2
16	H-Ras and K-Ras Oncoproteins Induce Different Tumor Spectra When Driven by the Same Regulatory Sequences. Cancer Research, 2017, 77, 707-718.	0.4	21
17	Chronic pancreatitis and lipomatosis are associated with defective function of ciliary genes in pancreatic ductal cells. Human Molecular Genetics, 2016, 25, ddw332.	1.4	13
18	K-Ras ^{V14I} -induced Noonan syndrome predisposes to tumour development in mice. Journal of Pathology, 2016, 239, 206-217.	2.1	12

CARMEN GUERRA

#	Article	IF	CITATIONS
19	The acinar regulator Gata6 suppressesKrasG12V-driven pancreatic tumorigenesis in mice. Gut, 2016, 65, 476-486.	6.1	83
20	Loss of p27Kip1 promotes metaplasia in the pancreas <i>via</i> the regulation of Sox9 expression. Oncotarget, 2015, 6, 35880-35892.	0.8	18
21	The impact of the genetic background in the Noonan syndrome phenotype induced by K-RasV14I. Rare Diseases (Austin, Tex), 2015, 3, e1045169.	1.8	12
22	Utilizing past and present mouse systems to engineer more relevant pancreatic cancer models. Frontiers in Physiology, 2014, 5, 464.	1.3	20
23	K-Ras ^{V14I} recapitulates Noonan syndrome in mice. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16395-16400.	3.3	67
24	<i>Parpâ€l </i> genetic ablation in <i>Ela–myc</i> mice unveils novel roles for Parpâ€l in pancreatic cancer. Journal of Pathology, 2014, 234, 214-227.	2.1	14
25	Galectin-1 Drives Pancreatic Carcinogenesis through Stroma Remodeling and Hedgehog Signaling Activation. Cancer Research, 2014, 74, 3512-3524.	0.4	100
26	Nicotine Promotes Initiation and Progression of KRAS-Induced Pancreatic Cancer via Gata6-Dependent Dedifferentiation of Acinar Cells in Mice. Gastroenterology, 2014, 147, 1119-1133.e4.	0.6	89
27	Mouse Models of RAS-Induced Tumors and Developmental Disorders. , 2014, , 211-231.		0
28	Genetically engineered mouse models of pancreatic adenocarcinoma. Molecular Oncology, 2013, 7, 232-247.	2.1	140
29	What We Have Learned About Pancreatic Cancer From Mouse Models. Gastroenterology, 2012, 142, 1079-1092.	0.6	151
30	EGF Receptor Signaling Is Essential for K-Ras Oncogene-Driven Pancreatic Ductal Adenocarcinoma. Cancer Cell, 2012, 22, 318-330.	7.7	339
31	Exploiting oncogene-induced replicative stress for the selective killing of Myc-driven tumors. Nature Structural and Molecular Biology, 2011, 18, 1331-1335.	3.6	342
32	Pancreatitis-Induced Inflammation Contributes to Pancreatic Cancer by Inhibiting Oncogene-Induced Senescence. Cancer Cell, 2011, 19, 728-739.	7.7	437
33	A Synthetic Lethal Interaction between K-Ras Oncogenes and Cdk4 Unveils a Therapeutic Strategy for Non-small Cell Lung Carcinoma. Cancer Cell, 2010, 18, 63-73.	7.7	373
34	DYRK1B-dependent autocrine-to-paracrine shift of Hedgehog signaling by mutant RAS. Nature Structural and Molecular Biology, 2010, 17, 718-725.	3.6	141
35	Genetic analysis of Ras signalling pathways in cell proliferation, migration and survival. EMBO Journal, 2010, 29, 1091-1104.	3.5	267
36	The epigenetic regulators Bmi1 and Ring1B are differentially regulated in pancreatitis and pancreatic ductal adenocarcinoma. Journal of Pathology, 2009, 219, 205-213.	2.1	49

CARMEN GUERRA

#	Article	IF	CITATIONS
37	A mouse model for Costello syndrome reveals an Ang Il–mediated hypertensive condition. Journal of Clinical Investigation, 2008, 118, 2169-79.	3.9	97
38	Chronic Pancreatitis Is Essential for Induction of Pancreatic Ductal Adenocarcinoma by K-Ras Oncogenes in Adult Mice. Cancer Cell, 2007, 11, 291-302.	7.7	1,042
39	Senescence in premalignant tumours. Nature, 2005, 436, 642-642.	13.7	1,280
40	Tumor induction by an endogenous K-ras oncogene is highly dependent on cellular context. Cancer Cell, 2003, 4, 111-120.	7.7	518