Carmen Guerra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4258736/publications.pdf

Version: 2024-02-01

40 papers

6,205 citations

304368

22

h-index

39 g-index

40 all docs 40 docs citations

40 times ranked

9594 citing authors

#	Article	IF	Citations
1	Senescence in premalignant tumours. Nature, 2005, 436, 642-642.	13.7	1,280
2	Chronic Pancreatitis Is Essential for Induction of Pancreatic Ductal Adenocarcinoma by K-Ras Oncogenes in Adult Mice. Cancer Cell, 2007, 11, 291-302.	7.7	1,042
3	Tumor induction by an endogenous K-ras oncogene is highly dependent on cellular context. Cancer Cell, 2003, 4, 111-120.	7.7	518
4	Pancreatitis-Induced Inflammation Contributes to Pancreatic Cancer by Inhibiting Oncogene-Induced Senescence. Cancer Cell, 2011, 19, 728-739.	7.7	437
5	A Synthetic Lethal Interaction between K-Ras Oncogenes and Cdk4 Unveils a Therapeutic Strategy for Non-small Cell Lung Carcinoma. Cancer Cell, 2010, 18, 63-73.	7.7	373
6	Exploiting oncogene-induced replicative stress for the selective killing of Myc-driven tumors. Nature Structural and Molecular Biology, 2011, 18, 1331-1335.	3.6	342
7	EGF Receptor Signaling Is Essential for K-Ras Oncogene-Driven Pancreatic Ductal Adenocarcinoma. Cancer Cell, 2012, 22, 318-330.	7.7	339
8	Genetic analysis of Ras signalling pathways in cell proliferation, migration and survival. EMBO Journal, 2010, 29, 1091-1104.	3.5	267
9	What We Have Learned About Pancreatic Cancer From Mouse Models. Gastroenterology, 2012, 142, 1079-1092.	0.6	151
10	DYRK1B-dependent autocrine-to-paracrine shift of Hedgehog signaling by mutant RAS. Nature Structural and Molecular Biology, 2010, 17, 718-725.	3.6	141
11	Genetically engineered mouse models of pancreatic adenocarcinoma. Molecular Oncology, 2013, 7, 232-247.	2.1	140
12	Saa3 is a key mediator of the protumorigenic properties of cancer-associated fibroblasts in pancreatic tumors. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1147-E1156.	3.3	128
13	Targeting galectin-1 inhibits pancreatic cancer progression by modulating tumor–stroma crosstalk. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3769-E3778.	3.3	114
14	Galectin-1 Drives Pancreatic Carcinogenesis through Stroma Remodeling and Hedgehog Signaling Activation. Cancer Research, 2014, 74, 3512-3524.	0.4	100
15	A mouse model for Costello syndrome reveals an Ang Il–mediated hypertensive condition. Journal of Clinical Investigation, 2008, 118, 2169-79.	3.9	97
16	c-RAF Ablation Induces Regression of Advanced Kras/Trp53 Mutant Lung Adenocarcinomas by a Mechanism Independent of MAPK Signaling. Cancer Cell, 2018, 33, 217-228.e4.	7.7	93
17	Nicotine Promotes Initiation and Progression of KRAS-Induced Pancreatic Cancer via Gata6-Dependent Dedifferentiation of Acinar Cells in Mice. Gastroenterology, 2014, 147, 1119-1133.e4.	0.6	89
18	The acinar regulator Gata6 suppressesKrasG12V-driven pancreatic tumorigenesis in mice. Gut, 2016, 65, 476-486.	6.1	83

#	Article	IF	Citations
19	Complete Regression of Advanced Pancreatic Ductal Adenocarcinomas upon Combined Inhibition of EGFR and C-RAF. Cancer Cell, 2019, 35, 573-587.e6.	7.7	7 5
20	K-Ras ^{V14I} recapitulates Noonan syndrome in mice. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16395-16400.	3.3	67
21	The epigenetic regulators Bmi1 and Ring1B are differentially regulated in pancreatitis and pancreatic ductal adenocarcinoma. Journal of Pathology, 2009, 219, 205-213.	2.1	49
22	Common Telomere Changes during InÂVivo Reprogramming and Early Stages of Tumorigenesis. Stem Cell Reports, 2017, 8, 460-475.	2.3	33
23	Pancreatic Ductal Deletion of Hnf1b Disrupts Exocrine Homeostasis, Leads to Pancreatitis, and Facilitates Tumorigenesis. Cellular and Molecular Gastroenterology and Hepatology, 2019, 8, 487-511.	2.3	26
24	H-Ras and K-Ras Oncoproteins Induce Different Tumor Spectra When Driven by the Same Regulatory Sequences. Cancer Research, 2017, 77, 707-718.	0.4	21
25	Utilizing past and present mouse systems to engineer more relevant pancreatic cancer models. Frontiers in Physiology, 2014, 5, 464.	1.3	20
26	Soluble AXL is a novel blood marker for early detection of pancreatic ductal adenocarcinoma and differential diagnosis from chronic pancreatitis. EBioMedicine, 2022, 75, 103797.	2.7	20
27	Genetically Engineered Mouse Models of K-Ras-Driven Lung and Pancreatic Tumors: Validation of Therapeutic Targets. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a031542.	2.9	19
28	Loss of p27Kip1 promotes metaplasia in the pancreas <i>via</i> the regulation of Sox9 expression. Oncotarget, 2015, 6, 35880-35892.	0.8	18
29	RAF1 kinase activity is dispensable for KRAS/p53 mutant lung tumor progression. Cancer Cell, 2021, 39, 294-296.	7.7	18
30	Tumor regression and resistance mechanisms upon CDK4 and RAF1 inactivation in KRAS/P53 mutant lung adenocarcinomas. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24415-24426.	3.3	15
31	<i>Parpâ€1</i> genetic ablation in <i>Ela–myc</i> mice unveils novel roles for Parpâ€1 in pancreatic cancer. Journal of Pathology, 2014, 234, 214-227.	2.1	14
32	Chronic pancreatitis and lipomatosis are associated with defective function of ciliary genes in pancreatic ductal cells. Human Molecular Genetics, 2016, 25, ddw332.	1.4	13
33	Modeling RASopathies with Genetically Modified Mouse Models. Methods in Molecular Biology, 2017, 1487, 379-408.	0.4	13
34	The impact of the genetic background in the Noonan syndrome phenotype induced by K-RasV14I. Rare Diseases (Austin, Tex.), 2015, 3, e1045169.	1.8	12
35	K-Ras ^{V14I} -induced Noonan syndrome predisposes to tumour development in mice. Journal of Pathology, 2016, 239, 206-217.	2.1	12
36	Dynamic Regulation of Expression of KRAS and Its Effectors Determines the Ability to Initiate Tumorigenesis in Pancreatic Acinar Cells. Cancer Research, 2021, 81, 2679-2689.	0.4	11

#	Article	IF	Citations
37	KRAS4A induces metastatic lung adenocarcinomas in vivo in the absence of the KRAS4B isoform. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	9
38	Combined Inhibition of FOSL-1 and YAP Using siRNA-Lipoplexes Reduces the Growth of Pancreatic Tumor. Cancers, 2022, 14, 3102.	1.7	4
39	Noonan syndrome: lessons learned from genetically modified mouse models. Expert Review of Endocrinology and Metabolism, 2017, 12, 367-378.	1.2	2
40	Mouse Models of RAS-Induced Tumors and Developmental Disorders. , 2014, , 211-231.		0