Shengliang Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4258657/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Carrierâ€Free Delivery of Ultrasmall Ï€â€Conjugated Oligomer Nanoparticles with Photothermal Conversion over 80% for Cancer Theranostics. Small, 2022, 18, e2104521.	10.0	11
2	Amplifying Free Radical Generation of AIE Photosensitizer with Small Singlet–Triplet Splitting for Hypoxia-Overcoming Photodynamic Therapy. ACS Applied Materials & Interfaces, 2022, 14, 5112-5121.	8.0	40
3	Organic radical materials in biomedical applications: State of the art and perspectives. Exploration, 2022, 2, .	11.0	28
4	An Activatable NIR Probe for the Detection and Elimination of Senescent Cells. Analytical Chemistry, 2022, 94, 5425-5431.	6.5	26
5	Molecular Programming of NIRâ€IIbâ€Emissive Semiconducting Small Molecules for In Vivo Highâ€Contrast Bioimaging Beyond 1500 nm. Advanced Materials, 2022, 34, e2201263.	21.0	44
6	An Enhanced Photothermal Therapeutic Iridium Hybrid Platform Reversing the Tumor Hypoxic Microenvironment. Molecules, 2022, 27, 2629.	3.8	2
7	Remote Manipulation of ROS-Sensitive Calcium Channel Using Near-Infrared-Responsive Conjugated Oligomer Nanoparticles for Enhanced Tumor Therapy <i>In Vivo</i> . Nano Letters, 2022, 22, 5427-5433.	9.1	23
8	Electrochemical detection of methyl-paraoxon based on bifunctional cerium oxide nanozyme with catalytic activity and signal amplification effect. Journal of Pharmaceutical Analysis, 2021, 11, 653-660.	5.3	33
9	Stable ï€-radical nanoparticles as versatile photosensitizers for effective hypoxia-overcoming photodynamic therapy. Materials Horizons, 2021, 8, 571-576.	12.2	48
10	Near-infrared small molecule coupled with rigidness and flexibility for high-performance multimodal imaging-guided photodynamic and photothermal synergistic therapy. Nanoscale Horizons, 2021, 6, 177-185.	8.0	71
11	Multifunctional oligomer sponge for efficient solar water purification and oil cleanup. Journal of Materials Chemistry A, 2021, 9, 2104-2110.	10.3	11
12	Achieving high singlet-oxygen generation by applying the heavy-atom effect to thermally activated delayed fluorescent materials. Chemical Communications, 2021, 57, 4902-4905.	4.1	27
13	Single molecular nanomedicine with NIR light-initiated superoxide radical, singlet oxygen and thermal generation for hypoxia-overcoming cancer therapy. Nanoscale, 2021, 13, 8012-8016.	5.6	7
14	Nanoprobesâ€Assisted Multichannel NIRâ€II Fluorescence Imagingâ€Guided Resection and Photothermal Ablation of Lymph Nodes. Advanced Science, 2021, 8, 2003972.	11.2	46
15	Recent Progress of Alkyl Radicals Generationâ€Based Agents for Biomedical Applications. Advanced Healthcare Materials, 2021, 10, e2100055.	7.6	21
16	A Diradicaloid Small Molecular Nanotheranostic with Strong Near-Infrared Absorbance for Effective Cancer Photoacoustic Imaging and Photothermal Therapy. ACS Applied Materials & Interfaces, 2021, 13, 15983-15991.	8.0	37
17	Marriage of 2D Covalent–Organic Framework and 3D Network as Stable Solarâ€Thermal Still for Efficient Solar Steam Generation. Small Methods, 2021, 5, e2100036.	8.6	38
18	Waterâ€Soluble Organic Nanoparticles with Programable Intermolecular Charge Transfer for NIRâ€I Photothermal Antiâ€Bacterial Therapy. Angewandte Chemie, 2021, 133, 11864-11868.	2.0	16

#	Article	IF	CITATIONS
19	Waterâ€Soluble Organic Nanoparticles with Programable Intermolecular Charge Transfer for NIRâ€II Photothermal Antiâ€Bacterial Therapy. Angewandte Chemie - International Edition, 2021, 60, 11758-11762.	13.8	91
20	Aligned Millineedle Arrays for Solar Power Seawater Desalination with Site‧pecific Salt Formation. Small, 2021, 17, e2101487.	10.0	36
21	Photochemical Synthesis of Nonplanar Small Molecules with Ultrafast Nonradiative Decay for Highly Efficient Phototheranostics. Advanced Materials, 2021, 33, e2102799.	21.0	15
22	Multi-Synergistic Removal of Low-Boiling-Point Contaminants with Efficient Carbon Aerogel-Based Solar Purifier. ACS Applied Materials & Interfaces, 2021, 13, 31624-31634.	8.0	20
23	Bioactive Silk Fibroin-Based Hybrid Biomaterials for Musculoskeletal Engineering: Recent Progress and Perspectives. ACS Applied Bio Materials, 2021, 4, 6630-6646.	4.6	16
24	Conjugated Polymers: Optical Toolbox for Bioimaging and Cancer Therapy. Small, 2021, 17, e2103127.	10.0	31
25	Perfecting and extending the near-infrared imaging window. Light: Science and Applications, 2021, 10, 197.	16.6	125
26	Recent Advances in Hypoxiaâ€Overcoming Strategy of Aggregationâ€Induced Emission Photosensitizers for Efficient Photodynamic Therapy. Advanced Healthcare Materials, 2021, 10, e2101607.	7.6	46
27	A Novel Doubleâ€Crosslinkingâ€Đoubleâ€Network Design for Injectable Hydrogels with Enhanced Tissue Adhesion and Antibacterial Capability for Wound Treatment. Advanced Functional Materials, 2020, 30, 1904156.	14.9	256
28	Membraneâ€Anchoring Photosensitizer with Aggregationâ€Induced Emission Characteristics for Combating Multidrugâ€Resistant Bacteria. Angewandte Chemie - International Edition, 2020, 59, 632-636.	13.8	154
29	Membraneâ€Anchoring Photosensitizer with Aggregationâ€Induced Emission Characteristics for Combating Multidrugâ€Resistant Bacteria. Angewandte Chemie, 2020, 132, 642-646.	2.0	19
30	Manipulating exciton dynamics of thermally activated delayed fluorescence materials for tuning two-photon nanotheranostics. Chemical Science, 2020, 11, 888-895.	7.4	54
31	Organic semiconducting polymer amphiphile for near-infrared-II light-triggered phototheranostics. Biomaterials, 2020, 232, 119684.	11.4	96
32	Singleâ€Photomolecular Nanotheranostics for Synergetic Nearâ€Infrared Fluorescence and Photoacoustic Imagingâ€Guided Highly Effective Photothermal Ablation. Small, 2020, 16, e2002672.	10.0	23
33	Terselenophene Regioisomer Conjugated Polymer Materials for High-Performance Cancer Phototheranostics. ACS Applied Materials & Interfaces, 2020, 12, 55605-55613.	8.0	4
34	Stable Organic Photosensitizer Nanoparticles with Absorption Peak beyond 800 Nanometers and High Reactive Oxygen Species Yield for Multimodality Phototheranostics. ACS Nano, 2020, 14, 9917-9928.	14.6	101
35	Manipulating Interfacial Charge-Transfer Absorption of Cocrystal Absorber for Efficient Solar Seawater Desalination and Water Purification. ACS Energy Letters, 2020, 5, 2698-2705.	17.4	92
36	Superwetting B4C bilayer foam for high cost-performance solar water purification. Materials Today Energy, 2020, 18, 100498.	4.7	9

#	Article	IF	CITATIONS
37	Waterâ€Splitting Based and Related Therapeutic Effects: Evolving Concepts, Progress, and Perspectives. Small, 2020, 16, e2004551.	10.0	26
38	<i>In Vivo</i> Real-Time Pharmaceutical Evaluations of Near-Infrared II Fluorescent Nanomedicine Bound Polyethylene Glycol Ligands for Tumor Photothermal Ablation. ACS Nano, 2020, 14, 13681-13690.	14.6	38
39	A broadband aggregation-independent plasmonic absorber for highly efficient solar steam generation. Journal of Materials Chemistry A, 2020, 8, 10742-10746.	10.3	88
40	Rational Design of Conjugated Small Molecules for Superior Photothermal Theranostics in the NIRâ€II Biowindow. Advanced Materials, 2020, 32, e2001146.	21.0	204
41	Near-Infrared-Light-Assisted in Situ Reduction of Antimicrobial Peptide-Protected Gold Nanoclusters for Stepwise Killing of Bacteria and Cancer Cells. ACS Applied Materials & Interfaces, 2020, 12, 11063-11071.	8.0	50
42	Thermal and Nonthermal Effects in Plasmonâ€Mediated Electrochemistry at Nanostructured Ag Electrodes. Angewandte Chemie - International Edition, 2020, 59, 6790-6793.	13.8	49
43	Thermal and Nonthermal Effects in Plasmonâ€Mediated Electrochemistry at Nanostructured Ag Electrodes. Angewandte Chemie, 2020, 132, 6856-6859.	2.0	4
44	Confocal visible/NIR photoacoustic microscopy of tumors with structural, functional, and nanoprobe contrasts. Photonics Research, 2020, 8, 1875.	7.0	25
45	Two-dimensional MXene-based materials for photothermal therapy. Nanophotonics, 2020, 9, 2233-2249.	6.0	85
46	Red/Nearâ€Infrared Thermally Activated Delayed Fluorescence OLEDs with Near 100 % Internal Quantum Efficiency. Angewandte Chemie, 2019, 131, 14802-14807.	2.0	40
47	Red/Nearâ€Infrared Thermally Activated Delayed Fluorescence OLEDs with Near 100 % Internal Quantum Efficiency. Angewandte Chemie - International Edition, 2019, 58, 14660-14665.	13.8	247
48	Efficient Orange-Red Thermally Activated Delayed Fluorescence Emitters Feasible for Both Thermal Evaporation and Solution Process. ACS Applied Materials & Interfaces, 2019, 11, 29086-29093.	8.0	57
49	Intrinsically Cancer-Mitochondria-Targeted Thermally Activated Delayed Fluorescence Nanoparticles for Two-Photon-Activated Fluorescence Imaging and Photodynamic Therapy. ACS Applied Materials & Interfaces, 2019, 11, 41051-41061.	8.0	73
50	Biodegradable π-Conjugated Oligomer Nanoparticles with High Photothermal Conversion Efficiency for Cancer Theranostics. ACS Nano, 2019, 13, 12901-12911.	14.6	191
51	Titelbild: Red/Nearâ€Infrared Thermally Activated Delayed Fluorescence OLEDs with Near 100 % Internal Quantum Efficiency (Angew. Chem. 41/2019). Angewandte Chemie, 2019, 131, 14529-14529.	2.0	0
52	Design of an Amphiphilic Perylene Diimide for Optical Recognition of Anticancer Drug through a Chiralityâ€Induced Helical Structure. Chemistry - A European Journal, 2019, 25, 9834-9839.	3.3	10
53	Bis-diketopyrrolopyrrole conjugated polymer nanoparticles as photothermic nanoagonist for specific and synergistic glioblastoma therapy. Biomaterials, 2019, 216, 119252.	11.4	47
54	Reactive Amphiphilic Conjugated Polymers for Inhibiting Amyloid β Assembly. Angewandte Chemie, 2019, 131, 6049-6054.	2.0	16

#	Article	IF	CITATIONS
55	Reactive Amphiphilic Conjugated Polymers for Inhibiting Amyloid β Assembly. Angewandte Chemie - International Edition, 2019, 58, 5988-5993.	13.8	60
56	AlEgen Nanoparticles of Arylamino Fumaronitrile Derivative with High Near-Infrared Emission for Two-Photon Imaging and in Vivo Cell Tracking. ACS Applied Bio Materials, 2019, 2, 430-436.	4.6	7
57	Regulation of excitation transitions by molecular design endowing full-color-tunable emissions with unexpected high quantum yields for bioimaging application. Science China Chemistry, 2018, 61, 418-426.	8.2	2
58	Photothermalâ€Responsive Conjugated Polymer Nanoparticles for Remote Control of Gene Expression in Living Cells. Advanced Materials, 2018, 30, 1705418.	21.0	110
59	Silver-Nanoparticle-Embedded Porous Silicon Disks Enabled SERS Signal Amplification for Selective Glutathione Detection. ACS Applied Nano Materials, 2018, 1, 410-417.	5.0	39
60	Oligo(p-phenylenevinylene) Derivative-Incorporated and Enzyme-Responsive Hybrid Hydrogel for Tumor Cell-Specific Imaging and Activatable Photodynamic Therapy. ACS Biomaterials Science and Engineering, 2018, 4, 2037-2045.	5.2	17
61	Photothermal-Responsive Conjugated Polymer Nanoparticles for the Rapid and Effective Killing of Bacteria. ACS Applied Bio Materials, 2018, 1, 27-32.	4.6	53
62	Design of antibacterial peptide-like conjugated molecule with broad spectrum antimicrobial ability. Science China Chemistry, 2018, 61, 113-117.	8.2	21
63	Supramolecular conjugated polymer materials for organelle imaging in living cells. Materials Chemistry Frontiers, 2017, 1, 1768-1772.	5.9	7
64	Biofilm Inhibition and Elimination Regulated by Cationic Conjugated Polymers. ACS Applied Materials & Interfaces, 2017, 9, 16933-16938.	8.0	73
65	Conjugated Polyelectrolyte–Silver Nanostructure Pair for Detection and Killing of Bacteria. Advanced Materials Technologies, 2017, 2, 1700033.	5.8	43
66	Conjugated Polymer Nanoparticles to Augment Photosynthesis of Chloroplasts. Angewandte Chemie, 2017, 129, 5392-5395.	2.0	35
67	Conjugated Polymer Nanoparticles to Augment Photosynthesis of Chloroplasts. Angewandte Chemie - International Edition, 2017, 56, 5308-5311.	13.8	122
68	Conjugated Polymer with Intrinsic Alkyne Units for Synergistically Enhanced Raman Imaging in Living Cells. Angewandte Chemie, 2017, 129, 13640-13643.	2.0	10
69	Conjugated Polymer with Intrinsic Alkyne Units for Synergistically Enhanced Raman Imaging in Living Cells. Angewandte Chemie - International Edition, 2017, 56, 13455-13458.	13.8	78
70	Polyelectrolyte‧ilver Nanostructures: Conjugated Polyelectrolyte–Silver Nanostructure Pair for Detection and Killing of Bacteria (Adv. Mater. Technol. 7/2017). Advanced Materials Technologies, 2017, 2, .	5.8	0
71	Graphdiyne Materials as Nanotransducer for in Vivo Photoacoustic Imaging and Photothermal Therapy of Tumor. Chemistry of Materials, 2017, 29, 6087-6094.	6.7	149
72	Cationic Poly(<i>p</i> â€phenylene vinylene) Materials as a Multifunctional Platform for Lightâ€Enhanced siRNA Delivery. Chemistry - an Asian Journal, 2016, 11, 2686-2689.	3.3	21

#	Article	IF	CITATIONS
73	Preparation of Reactive Oligo(<i>p</i> â€Phenylene Vinylene) Materials for Spatial Profiling of the Chemical Reactivity of Intracellular Compartments. Advanced Materials, 2016, 28, 3749-3754.	21.0	18
74	Near-Infrared (NIR)-Absorbing Conjugated Polymer Dots as Highly Effective Photothermal Materials for <i>In Vivo</i> Cancer Therapy. Chemistry of Materials, 2016, 28, 8669-8675.	6.7	197
75	Preparation of Conjugated Polymer Grafted with H ₂ O ₂ -Sensitive Prodrug for Cell Imaging and Tumor Cell Killing. ACS Applied Materials & Interfaces, 2016, 8, 42-46.	8.0	48
76	Visual Detection of Multiplex MicroRNAs Using Cationic Conjugated Polymer Materials. ACS Applied Materials & Interfaces, 2016, 8, 1520-1526.	8.0	33
77	An Optical Nanoruler Based on a Conjugated Polymerâ^'Silver Nanoprism Pair for Labelâ€Free Protein Detection. Advanced Materials, 2015, 27, 6040-6045.	21.0	79
78	Anchoring effects of surface chemistry on gold nanorods: modulating autophagy. Journal of Materials Chemistry B, 2015, 3, 3324-3330.	5.8	24
79	Self-Monitoring and Self-Delivery of Photosensitizer-Doped Nanoparticles for Highly Effective Combination Cancer Therapy <i>in Vitro</i> and <i>in Vivo</i> . ACS Nano, 2015, 9, 9741-9756.	14.6	149
80	Fluorescence Ratiometric Assay Strategy for Chemical Transmitter of Living Cells Using H ₂ O ₂ -Sensitive Conjugated Polymers. ACS Applied Materials & Interfaces, 2015, 7, 24110-24118.	8.0	33
81	Protein Detection: An Optical Nanoruler Based on a Conjugated Polymerâ^'Silver Nanoprism Pair for Label-Free Protein Detection (Adv. Mater. 39/2015). Advanced Materials, 2015, 27, 6039-6039.	21.0	2
82	ROS self-scavenging polythiophene materials for cell imaging. Polymer Chemistry, 2015, 6, 8244-8247.	3.9	7
83	pH-responsive biocompatible fluorescent polymer nanoparticles based on phenylboronic acid for intracellular imaging and drug delivery. Nanoscale, 2014, 6, 13701-13709.	5.6	62