Richard G Haverkamp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4258591/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Silver Nanoparticles Disrupt Wheat (<i>Triticum aestivum</i> L.) Growth in a Sand Matrix. Environmental Science & Technology, 2013, 47, 1082-1090.	10.0	299
2	The mechanism of metal nanoparticle formation in plants: limits on accumulation. Journal of Nanoparticle Research, 2009, 11, 1453-1463.	1.9	240
3	Structural basis for rodlet assembly in fungal hydrophobins. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3621-3626.	7.1	218
4	Electrocatalytic activity of IrO2–RuO2 supported on Sb-doped SnO2 nanoparticles. Electrochimica Acta, 2010, 55, 1978-1984.	5.2	173
5	Phosphorus removal by an â€`active' slag filter–a decade of full scale experience. Water Research, 2006, 40, 113-118.	11.3	152
6	Gold nanoparticles produced in a microalga. Journal of Nanoparticle Research, 2011, 13, 6439-6445.	1.9	140
7	The Hydrophobin EAS Is Largely Unstructured in Solution and Functions by Forming Amyloid-Like Structures. Structure, 2001, 9, 83-91.	3.3	139
8	Production of hydrogen by the electrochemical reforming of glycerol–water solutions in a PEM electrolysis cell. International Journal of Hydrogen Energy, 2008, 33, 4649-4654.	7.1	125
9	Pick your carats: nanoparticles of gold–silver–copper alloy produced in vivo. Journal of Nanoparticle Research, 2007, 9, 697-700.	1.9	124
10	Silver and gold nanoparticles in plants: sites for the reduction to metal. Metallomics, 2011, 3, 628.	2.4	117
11	Accumulation of Gold Nanoparticles inBrassic Juncea. International Journal of Phytoremediation, 2007, 9, 197-206.	3.1	108
12	Heterogeneity of milk fat globule membrane structure and composition asÂobserved using fluorescence microscopy techniques. International Dairy Journal, 2008, 18, 1081-1089.	3.0	96
13	Iridium–ruthenium single phase mixed oxides for oxygen evolution: Composition dependence of electrocatalytic activity. Electrochimica Acta, 2012, 70, 158-164.	5.2	88
14	Revisiting the interpretation of casein micelle SAXS data. Soft Matter, 2016, 12, 6937-6953.	2.7	78
15	Phosphorus Removal Mechanisms in Active Slag Filters Treating Waste Stabilization Pond Effluent. Environmental Science & Technology, 2007, 41, 3296-3301.	10.0	73
16	Solving the mystery of the internal structure of casein micelles. Soft Matter, 2015, 11, 2723-2725.	2.7	68
17	Direct observation of the asphaltene structure in paving-grade bitumen using confocal laser-scanning microscopy. Journal of Microscopy, 2004, 215, 149-155.	1.8	67
18	Nanostructure of electrospun collagen: Do electrospun collagen fibers form native structures?. Materialia, 2018, 3, 90-96.	2.7	67

RICHARD G HAVERKAMP

#	Article	IF	CITATIONS
19	Stability of probiotic Lactobacillus paracasei during storage as affected by the drying method. International Dairy Journal, 2014, 39, 1-7.	3.0	65
20	Modelling the dissolution of alumina powder in cryolite. Chemical Engineering and Processing: Process Intensification, 1998, 37, 177-187.	3.6	64
21	Studies of the microstructure of polymer-modified bitumen emulsions using confocal laser scanning microscopy. Journal of Microscopy, 2001, 204, 252-257.	1.8	57
22	Energy resolved XPS depth profile of (IrO ₂ , RuO ₂ ,) Tj ETQq0 0 0 rgBT /Overlock 10 T nanoparticle structure. Surface and Interface Analysis, 2011, 43, 847-855.	f 50 627 To 1.8	d (Sb _{2< 54}
23	Multifunctional Inorganic-Binding Beads Self-Assembled Inside Engineered Bacteria. Bioconjugate Chemistry, 2008, 19, 2072-2080.	3.6	52
24	Stretching Single Molecules of Connective Tissue Glycans to Characterize Their Shape-Maintaining Elasticity. Biomacromolecules, 2005, 6, 1816-1818.	5.4	50
25	Collagen Orientation and Leather Strength for Selected Mammals. Journal of Agricultural and Food Chemistry, 2013, 61, 887-892.	5.2	45
26	Synthesis and Characterization of LaCr1â^'xNixO3Perovskite Oxide Catalysts. Journal of Catalysis, 1997, 166, 315-323.	6.2	43
27	Collagen Fibril Diameter and Leather Strength. Journal of Agricultural and Food Chemistry, 2013, 61, 11524-11531.	5.2	41
28	Changes to Collagen Structure during Leather Processing. Journal of Agricultural and Food Chemistry, 2015, 63, 2499-2505.	5.2	41
29	Investigation of morphological changes toStaphylococcus aureusinduced by ovine-derived antimicrobial peptides using TEM and AFM. FEMS Microbiology Letters, 2004, 240, 105-110.	1.8	39
30	Collagen Fibril Structure and Strength in Acellular Dermal Matrix Materials of Bovine, Porcine, and Human Origin. ACS Biomaterials Science and Engineering, 2015, 1, 1026-1038.	5.2	38
31	Adsorption of hydrogen fluoride on alumina. Surface and Interface Analysis, 1992, 19, 139-144.	1.8	33
32	Nanoparticles of IrO2 or Sb–SnO2 increase the performance of iridium oxide DSA electrodes. Journal of Materials Science, 2012, 47, 1135-1141.	3.7	33
33	Collagen Extraction from Animal Skin. Biology, 2022, 11, 905.	2.8	32
34	Collagen Fibril Orientation in Ovine and Bovine Leather Affects Strength: A Small Angle X-ray Scattering (SAXS) Study. Journal of Agricultural and Food Chemistry, 2011, 59, 9972-9979.	5.2	31
35	Leather Structure Determination by Small-Angle X-ray Scattering (SAXS): Cross Sections of Ovine and Bovine Leather. Journal of Agricultural and Food Chemistry, 2010, 58, 5286-5291.	5.2	30
36	Poisson's ratio of collagen fibrils measured by small angle X-ray scattering of strained bovine pericardium. Journal of Applied Physics, 2015, 117, .	2.5	30

RICHARD G HAVERKAMP

#	Article	IF	CITATIONS
37	Effects of Redox Potential and pH Changes on Phosphorus Retention by Melter Slag Filters Treating Wastewater. Environmental Science & Technology, 2007, 41, 6585-6590.	10.0	29
38	Assessment of physical techniques to regenerate active slag filters removing phosphorus from wastewater. Water Research, 2009, 43, 277-282.	11.3	29
39	Biophysical characterization of ovine forestomach extracellular matrix biomaterials. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2011, 96B, 67-75.	3.4	29
40	Model for stretching elastic biopolymers which exhibit conformational transformations. Physical Review E, 2007, 75, 021907.	2.1	28
41	The digestion of New Zealand ilmenite by hydrochloric acid. Hydrometallurgy, 2016, 163, 198-203.	4.3	28
42	X-ray pair distribution function analysis of nanostructured materials using a Mythen detector. Journal of Synchrotron Radiation, 2009, 16, 849-856.	2.4	27
43	Collagen Fibril Alignment and Deformation during Tensile Strain of Leather: A Small-Angle X-ray Scattering Study. Journal of Agricultural and Food Chemistry, 2012, 60, 1201-1208.	5.2	27
44	Stabilizing Chromium from Leather Waste in Biochar. ACS Sustainable Chemistry and Engineering, 2014, 2, 1864-1870.	6.7	27
45	Stretching single polysaccharide molecules using AFM: A potential method for the investigation of the intermolecular uronate distribution of alginate?. Food Hydrocolloids, 2008, 22, 18-23.	10.7	26
46	Age Dependent Differences in Collagen Alignment of Glutaraldehyde Fixed Bovine Pericardium. BioMed Research International, 2014, 2014, 1-10.	1.9	22
47	Collagen cross linking and fibril alignment in pericardium. RSC Advances, 2015, 5, 3611-3618.	3.6	22
48	An XPS study of the fluorination of carbon anodes in molten NaF–AlF3–CaF2. Journal of Materials Science, 2012, 47, 1262-1267.	3.7	21
49	A Decade of Nanoparticle Research in Australia and New Zealand. Particulate Science and Technology, 2010, 28, 1-40.	2.1	20
50	Collagen fibril strain, recruitment and orientation for pericardium under tension and the effect of cross links. RSC Advances, 2015, 5, 103703-103712.	3.6	20
51	Investigation of the effects of fine structure on the nanomechanical properties of pectin. Physical Review E, 2007, 76, 021927.	2.1	19
52	Age Hardening Potential of Tall Oil Pitch Modified Bitumen. Road Materials and Pavement Design, 2007, 8, 467-481.	4.0	17
53	Ozone Production in a High Frequency Dielectric Barrier Discharge Generator. Ozone: Science and Engineering, 2002, 24, 321-328.	2.5	16
54	Looseness in bovine leather: microstructural characterization. Journal of the Science of Food and Agriculture, 2016, 96, 2731-2736.	3.5	15

RICHARD G HAVERKAMP

#	Article	IF	CITATIONS
55	XPS study of the changes during the service life of polyester powder coatings. Surface and Interface Analysis, 2002, 33, 330-334.	1.8	14
56	Collagen Fibril Orientation and Tear Strength across Ovine Skins. Journal of Agricultural and Food Chemistry, 2013, 61, 12327-12332.	5.2	14
57	Collagen Fibril Response to Strain in Scaffolds from Ovine Forestomach for Tissue Engineering. ACS Biomaterials Science and Engineering, 2017, 3, 2550-2558.	5.2	14
58	Effect of collagen packing and moisture content on leather stiffness. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 90, 1-10.	3.1	13
59	Effect of Oxazolidine E on Collagen Fibril Formation and Stabilization of the Collagen Matrix. Journal of Agricultural and Food Chemistry, 2007, 55, 6813-6822.	5.2	12
60	Mechanical model for a collagen fibril pair in extracellular matrix. European Biophysics Journal, 2009, 38, 487-493.	2.2	12
61	Force-extension formula for the worm-like chain model from a variational principle. Journal of Theoretical Biology, 2010, 262, 498-504.	1.7	12
62	The influence of water, lanolin, urea, proline, paraffin and fatliquor on collagen D-spacing in leather. RSC Advances, 2017, 7, 40658-40663.	3.6	12
63	Collagen Fibril Intermolecular Spacing Changes with 2-Propanol: A Mechanism for Tissue Stiffness. ACS Biomaterials Science and Engineering, 2017, 3, 2524-2532.	5.2	12
64	Acellular dermal matrix collagen responds to strain by intermolecular spacing contraction with fibril extension and rearrangement. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 79, 1-8.	3.1	12
65	Adhesive Properties of Tall Oil Pitch Modified Bitumen. Road Materials and Pavement Design, 2007, 8, 449-465.	4.0	11
66	Antimicrobial and immunomodulatory activities of an ovine proline/arginine-rich cathelicidin. International Journal of Antimicrobial Agents, 2010, 35, 288-291.	2.5	11
67	An EXAFS and XANES Study of V, Ni, and Fe Speciation in Cokes for Anodes Used in Aluminum Production. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2019, 50, 2969-2981.	2.1	11
68	Entropic and Enthalpic Contributions to the Chairâ^'Boat Conformational Transformation in Dextran under Single Molecule Stretching. Journal of Physical Chemistry B, 2007, 111, 13653-13657.	2.6	10
69	Electronic Structure and Growth of Electrochemically Formed Iridium Oxide Films. Journal of the Electrochemical Society, 2017, 164, F1662-F1670.	2.9	10
70	A XANES Study of Sulfur Speciation and Reactivity in Cokes for Anodes Used in Aluminum Production. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2018, 49, 1434-1443.	2.1	9
71	Collagen arrangement and strength in sausage casings produced from natural intestines. Food Hydrocolloids, 2022, 129, 107612.	10.7	9
72	Hydrophobin genes and their expression in conidial and aconidial Neurospora species. Fungal Genetics and Biology, 2007, 44, 250-257.	2.1	7

#	Article	IF	CITATIONS
73	Tropical Keratopathy (Florida Spots) in Cats. Veterinary Pathology, 2018, 55, 861-870.	1.7	7
74	Co-evolution of Carbon Oxides and Fluorides During the Electrowinning of Aluminium with Molten NaF–AlF3–CaF2–Al2O3 Electrolytes. Minerals, Metals and Materials Series, 2017, , 533-539.	0.4	7
75	Using Proteomics, Immunohistology, and Atomic Force Microscopy To Characterize Surface Damage to Lambskins Observed after Enzymatic Dewooling. Journal of Agricultural and Food Chemistry, 2008, 56, 7934-7941.	5.2	6
76	Chemical techniques for pretreating and regenerating active slag filters for improved phosphorus removal. Environmental Technology (United Kingdom), 2011, 32, 1053-1062.	2.2	6
77	A small angle Xâ€ray scattering study of the structure and development of looseness in bovine hides and leather. Journal of the Science of Food and Agriculture, 2017, 97, 1543-1551.	3.5	6
78	Artificially modified collagen fibril orientation affects leather tear strength. Journal of the Science of Food and Agriculture, 2018, 98, 3524-3531.	3.5	6
79	<p>Bovine Meniscus Middle Zone Tissue: Measurement of Collagen Fibril Behavior During Compression</p> . International Journal of Nanomedicine, 2020, Volume 15, 5289-5298.	6.7	6
80	C Kâ€edge NEXAFS study of fluorocarbon formation on carbon anodes in molten NaF–AlF ₃ –CaF ₂ . Surface and Interface Analysis, 2013, 45, 1854-1858.	1.8	5
81	Facilitating high-force single-polysaccharide stretching using covalent attachment of one end of the chain. Carbohydrate Polymers, 2012, 87, 806-815.	10.2	4
82	Age Differences with Glutaraldehyde Treatment in Collagen Fibril Orientation of Bovine Pericardium. Journal of Biomaterials and Tissue Engineering, 2016, 6, 992-997.	0.1	4
83	Collagen dehydration. International Journal of Biological Macromolecules, 2022, 216, 140-147.	7.5	4
84	Influence of Heat Transfer on Anode Reactions When Electrowinning Metal from Its Oxides Dissolved in Molten Fluorides. Journal of the Electrochemical Society, 2017, 164, H5108-H5118.	2.9	3
85	Measured collagen fibril response to arterial inflation using SAXS. International Journal of Biological Macromolecules, 2019, 137, 1020-1029.	7.5	3
86	Characterization of the Heavy Mineral Suite in a Holocene Beach Placer, Barrytown, New Zealand. Minerals (Basel, Switzerland), 2020, 10, 86.	2.0	3
87	Controlled Hydrolysis of TiO ₂ from HCl Digestion Liquors of Ilmenite. Industrial & Engineering Chemistry Research, 2022, 61, 6333-6342.	3.7	3
88	Nanotechnology Provides a New Perspective on Chemical Thermodynamics. Journal of Chemical Education, 2009, 86, 50.	2.3	2
89	Deer leather: analysis of the microstructure affecting pebble. Journal of the Science of Food and Agriculture, 2017, 97, 3509-3514.	3.5	2
90	Data on collagen structures in leather with varying moisture contents from small angle X-ray scattering and three point bend testing. Data in Brief, 2018, 21, 1220-1226.	1.0	2

#	Article	IF	CITATIONS
91	Reactivity of Coke in Relation to Sulfur Level and Microstructure. Minerals, Metals and Materials Series, 2019, , 1247-1253.	0.4	2
92	Manganese accumulation in probiotic Lactobacillus paracasei ATCC 55544 analyzed by synchrotron X-ray fluorescence microscopy and impact of accumulation on the bacterial viability following encapsulation. Food Research International, 2021, 147, 110528.	6.2	2
93	A new force–extension formula for stretched macromolecules and polymers based on the Ising model. Physica A: Statistical Mechanics and Its Applications, 2016, 463, 467-474.	2.6	0
94	Cover Image, Volume 97, Issue 11. Journal of the Science of Food and Agriculture, 2017, 97, i-i.	3.5	0
95	Cover Image, Volume 97, Issue 5. Journal of the Science of Food and Agriculture, 2017, 97, i-i.	3.5	0
96	Facilitating Nanomechanical Measurements on Physisorbed Biopolymers with Automated On-the-Fly Monitoring of Single-Molecule Force Curves. Advanced Science Letters, 2011, 4, 3576-3579.	0.2	0
97	Fibril orientation and strength in collagen materials and adaptation to strain. Advanced Materials Letters, 2018, 9, 411-418.	0.6	0
98	An EXAFS and XANES Study of V, Ni, and Fe Speciation in Cokes for Anodes Used in Aluminum Production. Minerals, Metals and Materials Series, 2020, , 1327-1328.	0.4	0
99	Adhesive Properties of Tall Oil Pitch Modified Bitumen. Road Materials and Pavement Design, 2007, 8, 449-465.	4.0	0
100	Age Hardening Potential of Tall Oil Pitch Modified Bitumen. Road Materials and Pavement Design, 2007, 8, 467-481.	4.0	0