Nozar Anjabin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4258339/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dynamic strain aging of twinning-induced plasticity (TWIP) steel in tensile testing and deep drawing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 633, 136-143.	2.6	51
2	Crystal plasticity modeling of the effect of precipitate states on the work hardening and plastic anisotropy in an Al–Mg–Si alloy. Computational Materials Science, 2014, 83, 78-85.	1.4	35
3	A mixed finite element and improved genetic algorithm method for maximizing buckling load of stiffened laminated composite plates. Aerospace Science and Technology, 2017, 70, 378-387.	2.5	30
4	Physically based material model for evolution of stress–strain behavior of heat treatable aluminum alloys during solution heat treatment. Materials & Design, 2010, 31, 433-437.	5.1	20
5	Simulation and experimental analyses of dynamic strain aging of a supersaturated age hardenable aluminum alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 585, 165-173.	2.6	16
6	Constitutive Modeling of Hot Deformation Behavior of the AA6063 Alloy with Different Precipitates. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 5853-5860.	1.1	12
7	An upper bound solution for twist extrusion process. Metals and Materials International, 2014, 20, 825-834.	1.8	12
8	Study of Geometrically Necessary Dislocations of a Partially Recrystallized Aluminum Alloy Using 2D EBSD. Microscopy and Microanalysis, 2019, 25, 656-663.	0.2	9
9	Dynamic moving load identification of laminated composite beams using a hybrid FE-TMDQ-GAs method. Inverse Problems in Science and Engineering, 2017, 25, 1639-1652.	1.2	7
10	Modeling the Anisotropic Flow Behavior of Precipitate-Hardened Al–Cu Alloys During Plane Strain Compression. Metals and Materials International, 2019, 25, 159-167.	1.8	6
11	Microstructure based modelling of flow behaviour of Al–Mg–Si alloy at different temper conditions. Materials Science and Technology, 2013, 29, 968-974.	0.8	5
12	Effects of constrained groove pressing on mechanical properties of a TWIP steel. Materials Science and Technology, 2021, 37, 1291-1301.	0.8	5
13	Thermal Post-buckling Analysis of Moderately Thick Nanobeams. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 2018, 42, 33-38.	1.0	2
14	Dissolution Kinetics of Spheroidal-Shaped Precipitates in Age-Hardenable Aluminum Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 3584-3591.	1.1	1
15	Modeling the Age-Hardening Process of Aluminum Alloys Containing the Prolate/Oblate Shape Precipitates. Metals and Materials International, 2021, 27, 1620-1630.	1.8	0