Yang Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4258239/publications.pdf Version: 2024-02-01

VANCLU

#	Article	IF	CITATIONS
1	DNA-based nanoparticle tension sensors reveal that T-cell receptors transmit defined pN forces to their antigens for enhanced fidelity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5610-5615.	7.1	256
2	High-speed DNA-based rolling motors powered by RNase H. Nature Nanotechnology, 2016, 11, 184-190.	31.5	178
3	Very fast CRISPR on demand. Science, 2020, 368, 1265-1269.	12.6	129
4	Molecular Tension Probes for Imaging Forces at the Cell Surface. Accounts of Chemical Research, 2017, 50, 2915-2924.	15.6	127
5	Structurally Defined Nanoscale Sheets from Self-Assembly of Collagen-Mimetic Peptides. Journal of the American Chemical Society, 2014, 136, 4300-4308.	13.7	126
6	Nanoparticle Tension Probes Patterned at the Nanoscale: Impact of Integrin Clustering on Force Transmission. Nano Letters, 2014, 14, 5539-5546.	9.1	124
7	Tension Sensing Nanoparticles for Mechano-Imaging at the Living/Nonliving Interface. Journal of the American Chemical Society, 2013, 135, 5320-5323.	13.7	118
8	Nanoscale optomechanical actuators for controlling mechanotransduction in living cells. Nature Methods, 2016, 13, 143-146.	19.0	113
9	Titin-Based Nanoparticle Tension Sensors Map High-Magnitude Integrin Forces within Focal Adhesions. Nano Letters, 2016, 16, 341-348.	9.1	79
10	Ratiometric Tension Probes for Mapping Receptor Forces and Clustering at Intermembrane Junctions. Nano Letters, 2016, 16, 4552-4559.	9.1	65
11	Quantum Dots Encapsulated within Phospholipid Membranes: Phase-Dependent Structure, Photostability, and Site-Selective Functionalization. Journal of the American Chemical Society, 2014, 136, 1992-1999.	13.7	59
12	Real Time Observation of Chemical Reactions of Individual Metal Nanoparticles with High-Throughput Single Molecule Spectral Microscopy. Analytical Chemistry, 2010, 82, 8744-8749.	6.5	46
13	Mechanically Induced Catalytic Amplification Reaction for Readout of Receptorâ€Mediated Cellular Forces. Angewandte Chemie - International Edition, 2016, 55, 5488-5492.	13.8	36
14	Forces during cellular uptake of viruses and nanoparticles at the ventral side. Nature Communications, 2020, 11, 32.	12.8	35
15	Fluorescence Imaging Methods to Investigate Translation in Single Cells. Cold Spring Harbor Perspectives in Biology, 2019, 11, a032722.	5.5	32
16	Cas9 deactivation with photocleavable guide RNAs. Molecular Cell, 2021, 81, 1553-1565.e8.	9.7	30
17	Molecular Tension Probes to Investigate the Mechanopharmacology of Single Cells: A Step toward Personalized Mechanomedicine. Advanced Healthcare Materials, 2018, 7, e1800069.	7.6	17
18	Light-Responsive Polymer Particles as Force Clamps for the Mechanical Unfolding of Target Molecules. Nano Letters, 2018, 18, 2630-2636.	9.1	16

Yang Liu

#	Article	IF	CITATIONS
19	Mechanically Induced Catalytic Amplification Reaction for Readout of Receptorâ€Mediated Cellular Forces. Angewandte Chemie, 2016, 128, 5578-5582.	2.0	8
20	Improving the specificity of nucleic acid detection with endonuclease-actuated degradation. Communications Biology, 2022, 5, 290.	4.4	3
21	In vitro Cleavage and Electrophoretic Mobility Shift Assays for Very Fast CRISPR. Bio-protocol, 2021, 11, e4138.	0.4	0
22	CRISPR deactivation in mammalian cells using photocleavable guide RNAs. STAR Protocols, 2021, 2, 100909.	1.2	0