
Gennaro Chiarello

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4257435/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Liquid-Phase Exfoliated GeSe Nanoflakes for Photoelectrochemical-Type Photodetectors and Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces, 2020, 12, 48598-48613.	4.0	56
2	Broadband excitation spectrum of bulk crystals and thin layers of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>PtTe </mml:mi> <mml:mn>2 Physical Review B, 2019, 99, .</mml:mn></mml:msub></mml:math 	m a a <td>:msub></td>	:msub>
3	Sequestration of carbon monoxide at room temperature at vacancy sites of graphene. Chemical Communications, 2019, 55, 8607-8610.	2.2	2
4	Surface Reconstruction, Oxidation Mechanism, and Stability of Cd ₃ As ₂ . Advanced Functional Materials, 2019, 29, 1900965.	7.8	13
5	Tunable surface plasmons in Weyl semimetals TaAs and NbAs. Physical Review B, 2019, 99, .	1.1	25
6	Surface Instability and Chemical Reactivity of ZrSiS and ZrSiSe Nodal‣ine Semimetals. Advanced Functional Materials, 2019, 29, 1900438.	7.8	6
7	Toward the Effective Exploitation of Topological Phases of Matter in Catalysis: Chemical Reactions at the Surfaces of NbAs and TaAs Weyl Semimetals. Advanced Functional Materials, 2018, 28, 1800511.	7.8	40
8	Insight on Thermally Activated Hydrocarbon Dehydrogenation on the Pt ₃ Ni(111) Surface: From Adsorbed Hydrocarbons up to Graphene Formation. Journal of Physical Chemistry C, 2018, 122, 3885-3892.	1.5	4
9	Tailoring the Surface Chemical Reactivity of Transitionâ€Metal Dichalcogenide PtTe ₂ Crystals. Advanced Functional Materials, 2018, 28, 1706504.	7.8	68
10	Anomalous lattice vibrations in self-nanostructured graphene on Ru(0001). Surface Science, 2018, 678, 5-10.	0.8	0
11	Anisotropic ultraviolet-plasmon dispersion in black phosphorus. Nanoscale, 2018, 10, 21918-21927.	2.8	18
12	3D Dirac Plasmons in the Type-II Dirac Semimetal <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>PtTe</mml:mi></mml:mrow><mml:mrow><mr Physical Review Letters, 2018, 121, 086804.</mr </mml:mrow></mml:msub></mml:mrow></mml:math 	nl:mn>2 </td <td>95 mml:mn></td>	95 mml:mn>
13	Effect of moiré superlattice reconstruction in the electronic excitation spectrum of graphene-metal heterostructures. 2D Materials, 2017, 4, 021001.	2.0	11
14	Dispersion and damping of the interband π plasmon in graphene grown on Cu(111) foils. Carbon, 2017, 114, 70-76.	5.4	25
15	Cutting a Gordian Knot: Dispersion of plasmonic modes in Bi2Se3 topological insulator. Applied Physics Letters, 2017, 110, .	1.5	16
16	Graphene on Pt ₃ Ni(1 1 1): a suitable platform for tunable charge doping, electron–phor coupling and plasmonic excitations. 2D Materials, 2017, 4, 035003.	10n 2.0	11
17	The role of surface chemical reactivity in the stability of electronic nanodevices based on two-dimensional materials "beyond graphene―and topological insulators. FlatChem, 2017, 1, 60-64.	2.8	32
18	Plasmon spectroscopy of graphene and other two-dimensional materials with transmission electron microscopy. Materials Science in Semiconductor Processing, 2017, 65, 88-99.	1.9	40

#	Article	IF	CITATIONS
19	The Advent of Indium Selenide: Synthesis, Electronic Properties, Ambient Stability and Applications. Nanomaterials, 2017, 7, 372.	1.9	50
20	Unusually strong lateral interaction in the CO overlayer in phosphorene-based systems. Nano Research, 2016, 9, 2598-2605.	5.8	15
21	Unveiling the Mechanisms Leading to H ₂ Production Promoted by Water Decomposition on Epitaxial Graphene at Room Temperature. ACS Nano, 2016, 10, 4543-4549.	7.3	60
22	When plasmonics meets membrane technology. Journal of Physics Condensed Matter, 2016, 28, 363003.	0.7	75
23	Unveiling the Oxidation Processes of Pt ₃ Ni(1 1 1) by Realâ€Time Surface Core‣evel Spectroscopy. ChemCatChem, 2016, 8, 713-718.	1.8	4
24	The influence of chemical reactivity of surface defects on ambient-stable InSe-based nanodevices. Nanoscale, 2016, 8, 8474-8479.	2.8	92
25	Interband plasmons in supported graphene on metal substrates: Theory and experiments. Carbon, 2016, 96, 91-97.	5.4	28
26	Emergence of an Out-of-Plane Optical Phonon (ZO) Kohn Anomaly in Quasifreestanding Epitaxial Graphene. Physical Review Letters, 2015, 115, 075504.	2.9	29
27	Interplay of Surface and Dirac Plasmons in Topological Insulators: The Case of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mi>Bi</mml:mi></mml:mrow><mml:mrow><mml: 115.="" 2015.="" 216802.<="" letters.="" physical="" review="" td=""><td>mn32<td>m<mark>87</mark>m></td></td></mml:></mml:mrow></mml:msub></mml:mrow></mml:math>	m n 32 <td>m<mark>87</mark>m></td>	m <mark>87</mark> m>
28	lce formation on clean and alkali-doped quasi-freestanding graphene: A vibrational investigation. Carbon, 2015, 93, 242-249.	5.4	6
29	Substrate-dependent plasmonic properties of supported graphene. Surface Science, 2015, 634, 76-80.	0.8	18
30	The influence of electron confinement, quantum size effects, and film morphology on the dispersion and the damping of plasmonic modes in Ag and Au thin films. Progress in Surface Science, 2015, 90, 144-193.	3.8	48
31	Probing the Young's modulus and Poisson's ratio in graphene/metal interfaces and graphite: a comparative study. Nano Research, 2015, 8, 1847-1856.	5.8	130
32	Symmetries and selection rules in the measurement of the phonon spectrum of graphene and related materials. Carbon, 2015, 85, 225-232.	5.4	21
33	Collective Excitations in Monolayer Graphene on Metals: Phonons and Plasmons. Carbon Materials, 2015, , 33-66.	0.2	0
34	Emergence of a nonlinear plasmon in the electronic response of doped graphene. Carbon, 2014, 71, 176-180.	5.4	21
35	Plasmon modes in graphene: status and prospect. Nanoscale, 2014, 6, 10927-10940.	2.8	161
36	Exploring the Surface Chemical Reactivity of Single Crystals of Binary and Ternary Bismuth Chalcogenides. Journal of Physical Chemistry C, 2014, 118, 21517-21522.	1.5	27

#	Article	IF	CITATIONS
37	Plasmonic Modes in Thin Films: Quo Vadis?. Frontiers in Materials, 2014, 1, .	1.2	9
38	The nature of free O-H stretching in water adsorbed on carbon nanosystems. Journal of Chemical Physics, 2013, 139, 064704.	1.2	8
39	Unravelling suitable graphene–metal contacts for graphene-based plasmonic devices. Nanoscale, 2013, 5, 8215.	2.8	39
40	Collective Electronic Excitations in Thin Ag Films on Ni(111). Plasmonics, 2013, 8, 1683-1690.	1.8	9
41	Evidence of confinement of the π plasmon in periodically rippled graphene on Ru(0001). Physical Chemistry Chemical Physics, 2013, 15, 11356.	1.3	24
42	Periodically rippled graphene on Ru(0001): A template for site-selective adsorption of hydrogen dimers via water splitting and hydrogen-spillover at room temperature. Carbon, 2013, 61, 412-417.	5.4	23
43	Evidence of composite plasmon–phonon modes in the electronic response of epitaxial graphene. Journal of Physics Condensed Matter, 2013, 25, 345303.	0.7	22
44	Vibrational spectroscopy and theory of alkali metal adsorption and co-adsorption on single-crystal surfaces. Surface Science Reports, 2013, 68, 305-389.	3.8	57
45	Spectroscopic characterization of graphene films grown on Pt(111) surface by chemical vapor deposition of ethylene. Journal of Raman Spectroscopy, 2013, 44, 1393-1397.	1.2	34
46	On the intercalation of CO molecules in ultra-high vacuum conditions underneath graphene epitaxially grown on metal substrates. Carbon, 2013, 62, 263-269.	5.4	6
47	Quenching of plasmons modes in air-exposed graphene-Ru contacts for plasmonic devices. Applied Physics Letters, 2013, 102, .	1.5	35
48	Phonon dispersion of quasi-freestanding graphene on Pt(111). Journal of Physics Condensed Matter, 2012, 24, 104025.	0.7	35
49	Elastic properties of a macroscopic graphene sample from phonon dispersion measurements. Carbon, 2012, 50, 4903-4910.	5.4	91
50	Quadratic Dispersion and Damping Processes of π Plasmon in Monolayer Graphene on Pt(111). Plasmonics, 2012, 7, 369-376.	1.8	35
51	Evidence of Kohn anomalies in quasi-freestanding graphene on Pt(1 1 1). Carbon, 2012, 50, 734-736.	5.4	36
52	Influence of Electron Quantum Confinement on the Electronic Response of Metal/Metal Interfaces. International Journal of Behavioral and Consultation Therapy, 2012, , 69-104.	0.4	1
53	Vibrational Investigation of Catalyst Surfaces: Change of the Adsorption Site of CO Molecules upon Coadsorption. Journal of Physical Chemistry C, 2011, 115, 13541-13553.	1.5	35
54	The adsorption and co-adsorption of oxygen and carbon monoxide on Pt3Ni(111): A vibrational study. Journal of Chemical Physics, 2011, 134, 224705.	1.2	17

#	Article	IF	CITATIONS
55	Hydrogen bonding at the water/quasi-freestanding graphene interface. Carbon, 2011, 49, 5180-5184.	5.4	34
56	Carbon monoxide interaction with oxygenated nickel single-crystal surfaces studied by vibrational spectroscopy, 2011, 55, 295-299.	1.2	9
57	Plasmonic Modes Confined in Nanoscale Thin Silver Films Deposited onto Metallic Substrates. Journal of Nanoscience and Nanotechnology, 2010, 10, 1313-1321.	0.9	16
58	O2 dissociation in Na-modified gold ultrathin layer on Cu(111). Gold Bulletin, 2010, 43, 267-274.	3.2	5
59	Low-energy bulk plasmon of nickel. Solid State Sciences, 2010, 12, 2096-2099.	1.5	6
60	A spectro-microscopic investigation of Fe–Co bimetallic catalysts supported on MgO for the production of thin carbon nanotubes. Carbon, 2010, 48, 3434-3445.	5.4	35
61	Enhancement of hydrolysis in alkali ultrathin layers on metal substrates in the presence of electron confinement. Chemical Physics Letters, 2010, 494, 84-87.	1.2	18
62	COLLECTIVE ELECTRONIC EXCITATIONS IN SYSTEMS EXHIBITING QUANTUM WELL STATES. Surface Review and Letters, 2009, 16, 171-190.	0.5	27
63	Collective Excitations in Nanoscale Thin Alkali Films: Na/Cu(111). Journal of Nanoscience and Nanotechnology, 2009, 9, 3932-3937.	0.9	24
64	Dispersion and damping of surface plasmon in Ag thin films grown on Cu(111) and Ni(111). Superlattices and Microstructures, 2009, 46, 137-140.	1.4	17
65	Electronic properties of gold thin films studied by electron energy loss spectroscopy. Gold Bulletin, 2009, 42, 195-200.	3.2	24
66	Electronic properties of metallic bilayers deposited on Cu(111): A comparative study. Surface Science, 2009, 603, 933-937.	0.8	16
67	Damping of the surface plasmon in clean and K-modified Ag thin films. Journal of Electron Spectroscopy and Related Phenomena, 2009, 173, 12-17.	0.8	16
68	Annealing effects on the plasmonic excitations of metal/metal interfaces. Applied Surface Science, 2009, 255, 6038-6042.	3.1	17
69	Chemical Reactions at Clean and Alkali-Doped Mismatched Metal/Metal Interfaces. Journal of Physical Chemistry C, 2009, 113, 316-320.	1.5	20
70	Dispersion and Damping of Gold Surface Plasmon. Plasmonics, 2008, 3, 165-170.	1.8	57
71	Shortâ€Range Interactions in Na Coadsorption with CO and O on Ni(111). ChemPhysChem, 2008, 9, 1189-1194.	1.0	28
72	Alkali adsorption on Ni(111) and their coadsorption with CO and O. Applied Surface Science, 2008, 254, 6854-6859.	3.1	23

#	Article	IF	CITATIONS
73	Temperature effects on alkali-promoted CO dissociation on Ni(111). Surface Science, 2008, 602, 2096-2100.	0.8	15
74	Mechanisms Leading to Alkali Oxidation on Metal Surfaces. Journal of Physical Chemistry C, 2008, 112, 17772-17774.	1.5	14
75	Nature of the Alkali Surface Bond at Low Coverages Investigated by Vibrational Measurements. Journal of Physical Chemistry C, 2008, 112, 6977-6980.	1.5	19
76	Alkali-promoted CO dissociation on Cu(111) and Ni(111) at room temperature. Journal of Chemical Physics, 2008, 129, 164703.	1.2	23
77	High resolution electron energy loss measurements of Naâ^•Cu(111) and H2Oâ^•Naâ^•Cu(111): Dependence of water reactivity as a function of Na coverage. Journal of Chemical Physics, 2007, 126, 244712.	1.2	32
78	Electronic properties of self-assembled quantum dots of sodium on Cu(111) and their interaction with water. Surface Science, 2007, 601, 2656-2659.	0.8	27
79	Electronic, chemical and structural characterization of CNTs grown by acetylene decomposition over MgO supported Fe–Co bimetallic catalysts. Surface Science, 2007, 601, 2823-2827.	0.8	12
80	Electronic and vibrational excitations in carbon nanotubes. Carbon, 2003, 41, 985-992.	5.4	13
81	Co-adsorption of oxygen and carbon monoxide on Ni(111). Surface Science, 2003, 536, 33-44.	0.8	16
82	Surface-plasmon dispersion and multipole surface plasmons in Al(111). Physical Review B, 2000, 62, 12676-12679.	1.1	43
83	A photoelectron spectroscopy study of sub-monolayer interfaces annealed from 300 up to 623 K. Surface Science, 1997, 380, 311-323.	0.8	29
84	XPS and AFM characterization of a vanadium oxide film on TiO2(100) surface. Applied Surface Science, 1996, 99, 15-19.	3.1	30
85	Local structure ofc(2×2)-Na on Al(001): Experimental evidence for the coexistence of intermixing and on-surface adsorption. Physical Review B, 1994, 50, 14516-14524.	1.1	59
86	Surface carboxylate species on Cu(100) studied by angle-scanned photoelectron diffraction and LCAO-LDF calculations. Surface Science, 1994, 315, 309-322.	0.8	32
87	An X-ray photoelectron spectroscopy study of the vanadia-titania catalysts. Applied Surface Science, 1993, 64, 91-96.	3.1	26
88	Azimuthal orientation of formate and acetate on Cu(100) studied by angle-scanned photoelectron diffraction. Surface Science, 1993, 291, L756-L758.	0.8	11
89	Vanadium oxide catalysts supported on laser-synthesized titania powders: Characterization and catalytic activity in the selective reduction of nitric oxide. Applied Catalysis B: Environmental, 1992, 1, 61-77.	10.8	38
90	Surface extended energy loss fine structure and local spin density investigation of carbidic carbon on the Ni(100) surface. Surface Science, 1988, 202, L621-L626.	0.8	29

#	Article	IF	CITATIONS
91	Extended fine structures in autoionization emission spectra of bulk chromium. Physical Review B, 1987, 35, 5311-5314.	1.1	22
92	Observation of carboxylic groups in the lattice of sinteredBa2YCu3O7â^'yhigh-Tcsuperconductors. Physical Review B, 1987, 36, 7148-7150.	1.1	70
93	Penning ionization electron spectroscopy, UPS and TPD of NCCN on Pd(100). Surface Science, 1986, 178, 667-678.	0.8	39
94	Secondary-electron emission and electron-energy-loss results on graphite single crystals. Physical Review B, 1986, 34, 6080-6084.	1.1	33
95	Extended energy loss fine structure measurement above shallow and deep core levels of 3d transition metals. Journal of Physics C: Solid State Physics, 1985, 18, 3595-3614.	1.5	44
96	Corbonaceous layers on Ni (110) and (100) studied by AES and eels. Surface Science, 1985, 162, 259-263.	0.8	24
97	Extended fine structures above TiL2,3edge: A comparison between reflection energy loss and extended x-ray-absorption fine-structure results. Physical Review B, 1984, 29, 3730-3732.	1.1	35
98	Structural study of iron and carbidic iron by surface extended energy loss spectroscopy. Surface Science, 1984, 136, 555-570.	0.8	27
99	Reflection electron-energy-loss investigation of the electronic and structural properties of palladium. Physical Review B, 1984, 29, 4878-4889.	1.1	81
100	Electronic properties of Fe80B20alloys: ordering and disordering effects. Journal of Physics F: Metal Physics, 1983, 13, 895-907.	1.6	26
101	Radial distribution functions of Cu and Ni by reflection energy loss spectroscopy. Surface Science, 1982, 117, 525-532.	0.8	34
102	Surface extended energy loss fine structures above the K-edge of oxygen on Al. Solid State Communications, 1982, 44, 845-847.	0.9	24
103	Extended ELS fine structures above the M2,3 edges of Cu and Ni. Solid State Communications, 1981, 40, 613-617.	0.9	72