Janet R Kumita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4257083/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intercellular propagated misfolding of wild-type Cu/Zn superoxide dismutase occurs via exosome-dependent and -independent mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3620-3625.	3.3	373
2	A prion-like domain in ELF3 functions as a thermosensor in Arabidopsis. Nature, 2020, 585, 256-260.	13.7	337
3	ANS Binding Reveals Common Features of Cytotoxic Amyloid Species. ACS Chemical Biology, 2010, 5, 735-740.	1.6	335
4	The extracellular chaperone clusterin influences amyloid formation and toxicity by interacting with prefibrillar structures. FASEB Journal, 2007, 21, 2312-2322.	0.2	285
5	Â-Helix formation in a photoswitchable peptide tracked from picoseconds to microseconds by time-resolved IR spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2379-2384.	3.3	186
6	Cholesterol catalyses Aβ42 aggregation through a heterogeneous nucleation pathway in the presence of lipid membranes. Nature Chemistry, 2018, 10, 673-683.	6.6	186
7	Protein amyloids develop an intrinsic fluorescence signature during aggregation. Analyst, The, 2013, 138, 2156.	1.7	182
8	Systematic development of small molecules to inhibit specific microscopic steps of Aβ42 aggregation in Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E200-E208.	3.3	180
9	Using an Azobenzene Cross-Linker to Either Increase or Decrease Peptide Helix Content upon Trans-to-Cis Photoisomerization. Chemistry and Biology, 2002, 9, 391-397.	6.2	150
10	Secondary nucleation and elongation occur at different sites on Alzheimer's amyloid-β aggregates. Science Advances, 2019, 5, eaau3112.	4.7	127
11	Trodusquemine enhances Aβ42 aggregation but suppresses its toxicity by displacing oligomers from cell membranes. Nature Communications, 2019, 10, 225.	5.8	111
12	A FRET Sensor for Nonâ€Invasive Imaging of Amyloid Formation in Vivo. ChemPhysChem, 2011, 12, 673-680.	1.0	98
13	Defining α-synuclein species responsible for Parkinson's disease phenotypes in mice. Journal of Biological Chemistry, 2019, 294, 10392-10406.	1.6	96
14	The Non-Core Regions of Human Lysozyme Amyloid Fibrils Influence Cytotoxicity. Journal of Molecular Biology, 2010, 402, 783-796.	2.0	95
15	Normal and Aberrant Biological Self-Assembly:  Insights from Studies of Human Lysozyme and Its Amyloidogenic Variants. Accounts of Chemical Research, 2006, 39, 603-610.	7.6	92
16	Molecular determinants of the aggregation behavior of α―and βâ€synuclein. Protein Science, 2008, 17, 887-898.	3.1	91
17	Multistep Inhibition of α-Synuclein Aggregation and Toxicity <i>in Vitro</i> and <i>in Vivo</i> by Trodusquemine. ACS Chemical Biology, 2018, 13, 2308-2319.	1.6	86
18	A Water-Soluble Azobenzene Cross-Linker for Photocontrol of Peptide Conformation. Bioconjugate Chemistry, 2003, 14, 824-829.	1.8	85

JANET R KUMITA

#	Article	IF	CITATIONS
19	α2-Macroglobulin and Haptoglobin Suppress Amyloid Formation by Interacting with Prefibrillar Protein Species. Journal of Biological Chemistry, 2009, 284, 4246-4254.	1.6	85
20	The Extracellular Chaperone Clusterin Potently Inhibits Human Lysozyme Amyloid Formation by Interacting with Prefibrillar Species. Journal of Molecular Biology, 2007, 369, 157-167.	2.0	84
21	Towards Multiparametric Fluorescent Imaging of Amyloid Formation: Studies of a YFP Model of α-Synuclein Aggregation. Journal of Molecular Biology, 2010, 395, 627-642.	2.0	72
22	Population of Nonnative States of Lysozyme Variants Drives Amyloid Fibril Formation. Journal of the American Chemical Society, 2011, 133, 7737-7743.	6.6	72
23	Engineering a Camelid Antibody Fragment That Binds to the Active Site of Human Lysozyme and Inhibits Its Conversion into Amyloid Fibrils. Biochemistry, 2008, 47, 11041-11054.	1.2	66
24	The Kinetics of Helix Unfolding of an Azobenzene Cross-Linked Peptide Probed by Nanosecond Time-Resolved Optical Rotatory Dispersion. Journal of the American Chemical Society, 2003, 125, 12443-12449.	6.6	64
25	Hypochlorite-induced structural modifications enhance the chaperone activity of human α ₂ -macroglobulin. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2081-90.	3.3	61
26	Single-Molecule Characterization of the Interactions between Extracellular Chaperones and Toxic α-Synuclein Oligomers. Cell Reports, 2018, 23, 3492-3500.	2.9	59
27	The Influence of Pathogenic Mutations in α-Synuclein on Biophysical and Structural Characteristics of Amyloid Fibrils. ACS Nano, 2020, 14, 5213-5222.	7.3	58
28	Local Cooperativity in an Amyloidogenic State of Human Lysozyme Observed at Atomic Resolution. Journal of the American Chemical Society, 2010, 132, 15580-15588.	6.6	55
29	Human pregnancy zone protein stabilizes misfolded proteins including preeclampsia- and Alzheimer's-associated amyloid beta peptide. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6101-6110.	3.3	55
30	Disulfide Bonds Reduce the Toxicity of the Amyloid Fibrils Formed by an Extracellular Protein. Angewandte Chemie - International Edition, 2011, 50, 7048-7051.	7.2	53
31	Native-State Stability Determines the Extent of Degradation Relative to Secretion of Protein Variants from Pichia pastoris. PLoS ONE, 2011, 6, e22692.	1.1	47
32	Inhibition of α-Synuclein Fibril Elongation by Hsp70 Is Governed by a Kinetic Binding Competition between α-Synuclein Species. Biochemistry, 2017, 56, 1177-1180.	1.2	47
33	Clusterin protects neurons against intracellular proteotoxicity. Acta Neuropathologica Communications, 2017, 5, 81.	2.4	47
34	Impact of the native-state stability of human lysozyme variants on protein secretion by Pichia pastoris. FEBS Journal, 2006, 273, 711-720.	2.2	46
35	Different Folding States from the Same Protein Sequence Determine Reversible vs Irreversible Amyloid Fate. Journal of the American Chemical Society, 2021, 143, 11473-11481.	6.6	45
36	Trodusquemine displaces protein misfolded oligomers from cell membranes and abrogates their cytotoxicity through a generic mechanism. Communications Biology, 2020, 3, 435.	2.0	44

JANET R KUMITA

#	Article	IF	CITATIONS
37	Rationalising Lysozyme Amyloidosis: Insights from the Structure and Solution Dynamics of T70N Lysozyme. Journal of Molecular Biology, 2005, 352, 823-836.	2.0	43
38	Proteaseâ€activated alphaâ€2â€macroglobulin can inhibit amyloid formation via two distinct mechanisms. FEBS Letters, 2013, 587, 398-403.	1.3	43
39	A Nanobody Binding to Non-Amyloidogenic Regions of the Protein Human Lysozyme Enhances Partial Unfolding but Inhibits Amyloid Fibril Formation. Journal of Physical Chemistry B, 2013, 117, 13245-13258.	1.2	42
40	Squalamine and Its Derivatives Modulate the Aggregation of Amyloid-β and α-Synuclein and Suppress the Toxicity of Their Oligomers. Frontiers in Neuroscience, 2021, 15, 680026.	1.4	34
41	Flow cytometric measurement of the cellular propagation of TDP-43 aggregation. Prion, 2017, 11, 195-204.	0.9	32
42	The relevance of contact-independent cell-to-cell transfer of TDP-43 and SOD1 in amyotrophic lateral sclerosis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 2762-2771.	1.8	29
43	Fabrication and Characterization of Reconstituted Silk Microgels for the Storage and Release of Small Molecules. Macromolecular Rapid Communications, 2019, 40, e1800898.	2.0	29
44	Achieving photo-control of protein conformation and activity: producing a photo-controlled leucine zipper. Faraday Discussions, 2003, 122, 89-103.	1.6	27
45	Analysis of the Native Structure, Stability and Aggregation of Biotinylated Human Lysozyme. PLoS ONE, 2012, 7, e50192.	1.1	27
46	A dopamine metabolite stabilizes neurotoxic amyloid-β oligomers. Communications Biology, 2021, 4, 19.	2.0	25
47	Rapid Structural, Kinetic, and Immunochemical Analysis of Alpha-Synuclein Oligomers in Solution. Nano Letters, 2020, 20, 8163-8169.	4.5	24
48	The Significance of the Location of Mutations for the Native-State Dynamics of Human Lysozyme. Biophysical Journal, 2016, 111, 2358-2367.	0.2	20
49	Amyloid-like Fibrils from an α-Helical Transmembrane Protein. Biochemistry, 2017, 56, 3225-3233.	1.2	19
50	Chemical and mechanistic analysis of photodynamic inhibition of Alzheimer's β-amyloid aggregation. Chemical Communications, 2019, 55, 1152-1155.	2.2	19
51	A non-natural variant of human lysozyme (I59T) mimics the in vitro behaviour of the I56T variant that is responsible for a form of familial amyloidosis. Protein Engineering, Design and Selection, 2010, 23, 499-506.	1.0	17
52	Diseaseâ€related amyloidogenic variants of human lysozyme trigger the unfolded protein response and disturb eye development in <i>Drosophila melanogaster</i> . FASEB Journal, 2012, 26, 192-202.	0.2	17
53	Alpha-2-Macroglobulin Is Acutely Sensitive to Freezing and Lyophilization: Implications for Structural and Functional Studies. PLoS ONE, 2015, 10, e0130036.	1.1	17
54	A Cysteine-Free Firefly Luciferase Retains Luminescence Activity. Biochemical and Biophysical Research Communications, 2000, 267, 394-397.	1.0	16

JANET R KUMITA

#	Article	IF	CITATIONS
55	The influence of novel gemini surfactants containing cycloalkyl side-chains on the structural phases of DNA in solution. Colloids and Surfaces B: Biointerfaces, 2015, 131, 83-92.	2.5	16
56	Structure and Dynamics of the Integrin LFA-1 I-Domain in the Inactive State Underlie its Inside-Out/Outside-In Signaling and Allosteric Mechanisms. Structure, 2015, 23, 745-753.	1.6	15
57	Cholesterol-rich naked mole-rat brain lipid membranes are susceptible to amyloid beta-induced damage in vitro. Aging, 2020, 12, 22266-22290.	1.4	15
58	Rationally Designed Antibodies as Research Tools to Study the Structure–Toxicity Relationship of Amyloid-l² Oligomers. International Journal of Molecular Sciences, 2020, 21, 4542.	1.8	12
59	Comparative Studies in the A30P and A53T α-Synuclein C. elegans Strains to Investigate the Molecular Origins of Parkinson's Disease. Frontiers in Cell and Developmental Biology, 2021, 9, 552549.	1.8	12
60	Solvent exposure of Tyr10 as a probe of structural differences between monomeric and aggregated forms of the amyloid-l² peptide. Biochemical and Biophysical Research Communications, 2015, 468, 696-701.	1.0	11
61	Using Tetracysteine-Tagged TDP-43 with a Biarsenical Dye To Monitor Real-Time Trafficking in a Cell Model of Amyotrophic Lateral Sclerosis. Biochemistry, 2019, 58, 4086-4095.	1.2	9
62	NMR characterization of the conformational fluctuations of the human lymphocyte functionâ€associated antigenâ€1 lâ€domain. Protein Science, 2014, 23, 1596-1606.	3.1	8
63	Protein Chemistry of Amyloid Fibrils and Chaperones: Implications for Amyloid Formation and Disease. Current Chemical Biology, 2010, 4, 89-98.	0.2	8
64	Engineering mono- and multi-valent inhibitors on a modular scaffold. Chemical Science, 2021, 12, 880-895.	3.7	7
65	Application of Lysine-specific Labeling to Detect Transient Interactions Present During Human Lysozyme Amyloid Fibril Formation. Scientific Reports, 2017, 7, 15018.	1.6	6
66	Mapping pathogenic processes contributing to neurodegeneration in <i>Drosophila</i> models of Alzheimer's disease. FEBS Open Bio, 2020, 10, 338-350.	1.0	6
67	Exogenous misfolded protein oligomers can cross the intestinal barrier and cause a disease phenotype in C. elegans. Scientific Reports, 2021, 11, 14391.	1.6	6
68	The Pathological G51D Mutation in Alpha-Synuclein Oligomers Confers Distinct Structural Attributes and Cellular Toxicity. Molecules, 2022, 27, 1293.	1.7	6
69	Characterisation of the structural, dynamic and aggregation properties of the W64R amyloidogenic variant of human lysozyme. Biophysical Chemistry, 2021, 271, 106563.	1.5	5
70	Probing the unfolded protein response in long-lived naked mole-rats. Biochemical and Biophysical Research Communications, 2020, 529, 1151-1157.	1.0	3
71	Structural Characterization of Covalently Stabilized Human Cystatin C Oligomers. International Journal of Molecular Sciences, 2020, 21, 5860.	1.8	3
72	Serum amyloid P component promotes formation of distinct aggregated lysozyme morphologies and reduces toxicity in Drosophila flies expressing F57I lysozyme. PLoS ONE, 2020, 15, e0227227.	1,1	3

#	Article	IF	CITATIONS
73	Structural Studies of the Oligomerization Process of Human Cystatin C Variants. Biophysical Journal, 2016, 110, 26a.	0.2	0
74	Homage to Chris Dobson. Frontiers in Molecular Biosciences, 2019, 6, 137.	1.6	0
75	Correction: Defining α-synuclein species responsible for Parkinson's disease phenotypes in mice Journal of Biological Chemistry, 2020, 295, 1142.	1.6	0