
Chelsea Scott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4255633/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The <i>M</i> 7 2016 Kumamoto, Japan, Earthquake: 3â€Ð Deformation Along the Fault and Within the Damage Zone Constrained From Differential Lidar Topography. Journal of Geophysical Research: Solid Earth, 2018, 123, 6138-6155.	3.4	75
2	Structural data collection with mobile devices: Accuracy, redundancy, and best practices. Journal of Structural Geology, 2017, 102, 98-112.	2.3	59
3	The 2016 M7 Kumamoto, Japan, Earthquake Slip Field Derived From a Joint Inversion of Differential Lidar Topography, Optical Correlation, and InSAR Surface Displacements. Geophysical Research Letters, 2019, 46, 6341-6351.	4.0	30
4	Surface materials and landforms as controls on InSAR permanent and transient responses to precipitation events in a hyperarid desert, Chile. Remote Sensing of Environment, 2020, 237, 111544.	11.0	23
5	High-resolution surface faulting from the 1983 Idaho Lost River Fault Mw 6.9 earthquake and previous events. Scientific Data, 2021, 8, 68.	5.3	23
6	High-Detail Fault Segmentation: Deep Insight into the Anatomy of the 1983 Borah Peak Earthquake Rupture Zone (Mw 6.9, Idaho, USA). Lithosphere, 2022, 2022, .	1.4	19
7	Sensitivity of earthquake source inversions to atmospheric noise and corrections of InSAR data. Journal of Geophysical Research: Solid Earth, 2016, 121, 4031-4044.	3.4	15
8	Distribution of Aseismic Deformation Along the Central San Andreas and Calaveras Faults From Differencing Repeat Airborne Lidar. Geophysical Research Letters, 2020, 47, e2020GL090628.	4.0	14
9	Andean earthquakes triggered by the 2010 Maule, Chile (Mw 8.8) earthquake: Comparisons of geodetic, seismic and geologic constraints. Journal of South American Earth Sciences, 2014, 50, 27-39.	1.4	12
10	Coseismic extension from surface cracks reopened by the 2014 Pisagua, northern Chile, earthquake sequence. Geology, 2016, 44, 387-390.	4.4	12
11	Creep Along the Central San Andreas Fault From Surface Fractures, Topographic Differencing, and InSAR. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB019762.	3.4	12
12	Measuring change at Earth's surface: On-demand vertical and three-dimensional topographic differencing implemented in OpenTopography. , 2021, 17, 1318-1332.		8
13	Semiautomatic Algorithm to Map Tectonic Faults and Measure Scarp Height from Topography Applied to the Volcanic Tablelands and the Hurricane Fault, Western US. Lithosphere, 2022, 2021, .	1.4	6
14	Statewide USGS 3DEP Lidar Topographic Differencing Applied to Indiana, USA. Remote Sensing, 2022, 14, 847.	4.0	6