Danilo M Dos Santos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4255564/publications.pdf

Version: 2024-02-01

44 papers 1,224 citations

361296 20 h-index 377752 34 g-index

44 all docs

44 docs citations

44 times ranked 1592 citing authors

#	Article	IF	CITATIONS
1	Optimization of carboxymethyl chitosan synthesis using response surface methodology and desirability function. International Journal of Biological Macromolecules, 2016, 85, 615-624.	3.6	163
2	Advances in Functional Polymer Nanofibers: From Spinning Fabrication Techniques to Recent Biomedical Applications. ACS Applied Materials & Samp; Interfaces, 2020, 12, 45673-45701.	4.0	144
3	Microwave-assisted carboxymethylation of cellulose extracted from brewer's spent grain. Carbohydrate Polymers, 2015, 131, 125-133.	5.1	71
4	Nanostructured electrospun nonwovens of poly ($\hat{l}\mu$ -caprolactone)/quaternized chitosan for potential biomedical applications. Carbohydrate Polymers, 2018, 186, 110-121.	5.1	68
5	Core-sheath nanostructured chitosan-based nonwovens as a potential drug delivery system for periodontitis treatment. International Journal of Biological Macromolecules, 2020, 142, 521-534.	3.6	53
6	Sorghum straw: Pulping and bleaching process optimization and synthesis of cellulose acetate. International Journal of Biological Macromolecules, 2019, 135, 877-886.	3.6	47
7	PDLLA honeycomb-like scaffolds with a high loading of superhydrophilic graphene/multi-walled carbon nanotubes promote osteoblast in vitro functions and guided in vivo bone regeneration. Materials Science and Engineering C, 2017, 73, 31-39.	3.8	42
8	Tailoring the Surface Properties of Micro/Nanofibers Using OD, 1D, 2D, and 3D Nanostructures: A Review on Postâ€Modification Methods. Advanced Materials Interfaces, 2021, 8, 2100430.	1.9	42
9	Response surface methodology applied to the study of the microwave-assisted synthesis of quaternized chitosan. Carbohydrate Polymers, 2016, 138, 317-326.	5.1	40
10	Investigation of the Internal Chemical Composition of Chitosan-Based LbL Films by Depth-Profiling X-ray Photoelectron Spectroscopy (XPS) Analysis. Langmuir, 2018, 34, 1429-1440.	1.6	35
11	Evaluation of chitosan crystallinity: A high-resolution solid-state NMR spectroscopy approach. Carbohydrate Polymers, 2020, 250, 116891.	5.1	35
12	Nanofibers interfaces for biosensing: Design and applications. Sensors and Actuators Reports, 2021, 3, 100048.	2.3	35
13	Design of A Low-Cost and Disposable Paper-Based Immunosensor for the Rapid and Sensitive Detection of Aflatoxin B1. Chemosensors, 2020, 8, 87.	1.8	31
14	Clotrimazole-loaded N-(2-hydroxy)-propyl-3-trimethylammonium, O-palmitoyl chitosan nanoparticles for topical treatment of vulvovaginal candidiasis. Acta Biomaterialia, 2021, 125, 312-321.	4.1	27
15	Electrospun recycled PET-based mats: Tuning the properties by addition of cellulose and/or lignin. Polymer Testing, 2017, 60, 422-431.	2.3	26
16	Soybean hulls: Optimization of the pulping and bleaching processes and carboxymethyl cellulose synthesis. International Journal of Biological Macromolecules, 2020, 144, 208-218.	3.6	25
17	Biodegradation of anthracene and different PAHs by a yellow laccase from Leucoagaricus gongylophorus. Environmental Science and Pollution Research, 2019, 26, 8675-8684.	2.7	23
18	Bilayered electrospun membranes composed of poly(lactic-acid)/natural rubber: A strategy against curcumin photodegradation for wound dressing application. Reactive and Functional Polymers, 2021, 163, 104889.	2.0	23

#	Article	IF	CITATIONS
19	Tailored chitosan/hyaluronan coatings for tumor cell adhesion: Effects of topography, charge density and surface composition. Applied Surface Science, 2019, 486, 508-518.	3.1	22
20	Chitosan microparticles embedded with multi-responsive poly(N-vinylcaprolactam-co-itaconic) Tj ETQq0 0 0 rgBT hydrophobic drugs. Colloids and Surfaces B: Biointerfaces, 2019, 175, 73-83.	/Overlock 2.5	10 Tf 50 707 22
21	Impedimetric electronic tongue based on molybdenum disulfide and graphene oxide for monitoring antibiotics in liquid media. Talanta, 2020, 217, 121039.	2.9	21
22	Characterization and physical-chemistry of methoxypoly(ethylene glycol)-g-chitosan. International Journal of Biological Macromolecules, 2019, 124, 828-837.	3.6	20
23	N-(2-Hydroxy)-propyl-3-trimethylammonium, O-Mysristoyl Chitosan Enhances the Solubility and Intestinal Permeability of Anticancer Curcumin. Pharmaceutics, 2018, 10, 245.	2.0	19
24	Combining Coaxial Electrospinning and 3D Printing: Design of Biodegradable Bilayered Membranes with Dual Drug Delivery Capability for Periodontitis Treatment. ACS Applied Bio Materials, 2022, 5, 146-159.	2.3	19
25	Current progress in plant pathogen detection enabled by nanomaterials-based (bio)sensors. Sensors and Actuators Reports, 2022, 4, 100068.	2.3	18
26	Tuning the properties of carboxymethylchitosan-based porous membranes for potential application as wound dressing. International Journal of Biological Macromolecules, 2021, 166, 459-470.	3.6	16
27	Advances in 3D printed sensors for food analysis. TrAC - Trends in Analytical Chemistry, 2022, 154, 116672.	5.8	15
28	A Green Protocol for Microwave-Assisted Extraction of Volatile Oil Terpenes from Pterodon emarginatus Vogel. (Fabaceae). Molecules, 2018, 23, 651.	1.7	14
29	Nanochitin-based composite films as a disposable ethanol sensor. Journal of Environmental Chemical Engineering, 2020, 8, 104163.	3.3	13
30	Dye Adsorption Capacity of MoS ₂ Nanoflakes Immobilized on Poly(lactic acid) Fibrous Membranes. ACS Applied Nano Materials, 2021, 4, 4881-4894.	2.4	12
31	N-(2-hydroxy)-propyl-3-trimethylammonium, O-palmitoyl chitosan: Synthesis, physicochemical and biological properties. International Journal of Biological Macromolecules, 2021, 178, 558-568.	3.6	12
32	Extensive $\langle i \rangle N \langle i \rangle$ -methylation of chitosan: evaluating the effects of the reaction conditions by using response surface methodology. Polymer International, 2015, 64, 1617-1626.	1.6	11
33	Tuning the Electrical Properties of Electrospun Nanofibers with Hybrid Nanomaterials for Detecting Isoborneol in Water Using an Electronic Tongue. Surfaces, 2019, 2, 432-443.	1.0	10
34	Tracking Sulfonated Polystyrene Diffusion in a Chitosan/Carboxymethyl Cellulose Layer-by-Layer Film: Exploring the Internal Architecture of Nanocoatings. Langmuir, 2020, 36, 4985-4994.	1.6	10
35	Electrospun nanofibers versus drop casting films for designing an electronic tongue: comparison of performance for monitoring geosmin and 2â€methylisoborneol in water samples. Polymers for Advanced Technologies, 2020, 31, 2075-2082.	1.6	8
36	Frontiers in Biomaterials., 2017,,.		8

#	Article	IF	CITATIONS
37	Insight into morphological, physicochemical and spectroscopic properties of \hat{l}^2 -chitin nanocrystalline structures. Carbohydrate Polymers, 2021, 273, 118563.	5.1	5
38	Microwave irradiation to the rapid extraction of Stryphnodendron adstringens (Barbatim \tilde{A} £o) compounds by statistical planning. Natural Product Research, 2021, 35, 354-358.	1.0	4
39	Fast-forward approach of time-domain NMR relaxometry for solid-state chemistry of chitosan. Carbohydrate Polymers, 2021, 256, 117576.	5.1	4
40	Electrochemical Immunosensor Made with Zeinâ€based Nanofibers for Onâ€site Detection of Aflatoxin B1. Electroanalysis, 2023, 35, .	1.5	4
41	Biodegradable Polymer Nanofibers Applied in Slow Release Systems for Agri-Food Applications. , 2019, , 291-316.		3
42	Sensing Materials: Nanofibers Produced by Electrospinning and Solution Blow Spinning. , 2023, , 521-541.		2
43	TiO ₂ Hollow Nanofiber/Polyaniline Nanocomposites for Ammonia Detection at Room Temperature. ChemNanoMat, 2022, 8, .	1.5	2
44	PROCESSAMENTO E APLICAÇÃ f O DE BIOMATERIAIS POLIMÃ%RICOS: AVANÇOS RECENTES E PERSPECTIVAS. Quimica Nova, 0, , .	0.3	0