Alexander J Smits

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4255353/alexander-j-smits-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

10,998 255 95 55 h-index g-index citations papers 6.74 276 13,000 3.5 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
255	An energy-efficient pathway to turbulent drag reduction. <i>Nature Communications</i> , 2021 , 12, 5805	17.4	3
254	Influence of a Microramp Array on a Hypersonic Shock-Wave/Turbulent Boundary-Layer Interaction. <i>AIAA Journal</i> , 2021 , 59, 1924-1939	2.1	1
253	Perspective on the Response of Turbulent Pipe Flows to Strong Perturbations. <i>Fluids</i> , 2021 , 6, 208	1.6	O
252	On the Boussinesq approximation in arbitrarily accelerating frames of reference. <i>Journal of Fluid Mechanics</i> , 2021 , 924,	3.7	1
251	The interaction of double burner fire whirls. <i>Combustion and Flame</i> , 2021 , 235, 111679	5.3	O
250	Effects of roughness on a turbulent boundary layer in hypersonic flow. <i>Experiments in Fluids</i> , 2021 , 62, 1	2.5	0
249	Reynolds stress scaling in the near-wall region of wall-bounded flows. <i>Journal of Fluid Mechanics</i> , 2021 , 926,	3.7	6
248	A simple method to monitor hemolysis in real time. Scientific Reports, 2020, 10, 5101	4.9	2
247	Swimmers' wake structures are not reliable indicators of swimming performance. <i>Bioinspiration and Biomimetics</i> , 2020 , 15, 024001	2.6	12
246	Some observations on Reynolds number scaling in wall-bounded flows. <i>Physical Review Fluids</i> , 2020 , 5,	2.8	3
245	Reynolds Number Effects on the Wake Structure of Pitching Convex Panels. <i>AIAA Journal</i> , 2020 , 58, 13	97 <u>></u> .140	13
244	The effect of blade geometry on the structure of vertical axis wind turbine wakes. <i>Journal of Wind Engineering and Industrial Aerodynamics</i> , 2020 , 207, 104328	3.7	9
243	Turbulent pipe flow response to a step change in surface roughness. <i>Journal of Fluid Mechanics</i> , 2020 , 904,	3.7	4
242	Bioinspired Underwater Propulsors 2020 , 113-139		1
241	Foil shapes for efficient fish-like propulsion 2019 ,		6
240	Roughness effects in laminar channel flow. <i>Journal of Fluid Mechanics</i> , 2019 , 876, 1129-1145	3.7	15
239	Reynolds Number Scaling of the Propulsive Performance of a Pitching Airfoil. <i>AIAA Journal</i> , 2019 , 57, 2663-2669	2.1	25

238	How smooth is a dolphin? The ridged skin of odontocetes. <i>Biology Letters</i> , 2019 , 15, 20190103	3.6	12	
237	Undulatory and oscillatory swimming. <i>Journal of Fluid Mechanics</i> , 2019 , 874,	3.7	66	
236	Effects of trailing edge shape on vortex formation by pitching panels of small aspect ratio. <i>Physical Review Fluids</i> , 2019 , 4,	2.8	24	
235	The Effect of Pitching Frequency on the Hydrodynamics of Oscillating Foils. <i>Journal of Applied Mechanics, Transactions ASME</i> , 2019 , 86,	2.7	6	
234	Stereo PIV measurements in fire whirls. Experiments in Fluids, 2019, 60, 1	2.5	3	
233	Numerical simulations of the flow around a square pitching panel. <i>Journal of Fluids and Structures</i> , 2018 , 76, 454-468	3.1	16	
232	Dynamic stall in vertical axis wind turbines: scaling and topological considerations. <i>Journal of Fluid Mechanics</i> , 2018 , 841, 746-766	3.7	37	
231	Flow past finite cylinders of constant curvature. <i>Journal of Fluid Mechanics</i> , 2018 , 837, 896-915	3.7	5	
230	Fully resolved measurements of turbulent boundary layer flows up to. <i>Journal of Fluid Mechanics</i> , 2018 , 851, 391-415	3.7	55	
229	Efficient cruising for swimming and flying animals is dictated by fluid drag. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 8116-8118	11.5	55	
228	Flow speed has little impact on propulsive characteristics of oscillating foils. <i>Physical Review Fluids</i> , 2018 , 3,	2.8	42	
227	Experiments on the structure and scaling of hypersonic turbulent boundary layers. <i>Journal of Fluid Mechanics</i> , 2018 , 834, 237-270	3.7	24	
226	Experimental Investigation of Two Hypersonic Shock/Turbulent Boundary-Layer Interactions. <i>AIAA Journal</i> , 2018 , 56, 4830-4844	2.1	9	
225	Coherent structures in turbulent square duct flow. <i>International Journal of Heat and Fluid Flow</i> , 2018 , 74, 144-153	2.4	4	
224	The effects of inflow conditions on vertical axis wind turbine wake structure and performance. <i>Journal of Wind Engineering and Industrial Aerodynamics</i> , 2018 , 183, 1-18	3.7	19	
223	The effect of stable thermal stratification on turbulent boundary layer statistics. <i>Journal of Fluid Mechanics</i> , 2017 , 812, 1039-1075	3.7	10	
222	Structure identification in pipe flow using proper orthogonal decomposition. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2017 , 375,	3	10	
221	Boundary layer suction through rectangular orifices: effects of aspect ratio and orientation. <i>Experiments in Fluids</i> , 2017 , 58, 1	2.5	2	

220	Effect of Tripping on Hypersonic Turbulent Boundary-Layer Statistics. AIAA Journal, 2017, 55, 3051-305	82.1	5
219	Turbulent boundary layer response to the introduction of stable stratification. <i>Journal of Fluid Mechanics</i> , 2017 , 811, 569-581	3.7	5
218	Substantial drag reduction in turbulent flow using liquid-infused surfaces. <i>Journal of Fluid Mechanics</i> , 2017 , 827, 448-456	3.7	56
217	Forces and energetics of intermittent swimming. Acta Mechanica Sinica/Lixue Xuebao, 2017 , 33, 725-732	22	31
216	Linear stability of two-layer Couette flows. Journal of Fluid Mechanics, 2017, 826, 128-157	3.7	7
215	Impact of trailing edge shape on the wake and propulsive performance of pitching panels. <i>Physical Review Fluids</i> , 2017 , 2,	2.8	38
214	Nonsinusoidal gaits for unsteady propulsion. <i>Physical Review Fluids</i> , 2017 , 2,	2.8	28
213	Scaling the propulsive performance of heaving and pitching foils. <i>Journal of Fluid Mechanics</i> , 2017 , 822, 386-397	3.7	100
212	Modelling and operation of sub-miniature constant temperature hot-wire anemometry. <i>Measurement Science and Technology</i> , 2016 , 27, 125301	2	4
211	Scaling of a small scale burner fire whirl. <i>Combustion and Flame</i> , 2016 , 163, 202-208	5.3	33
210	Measurement of the Flow Field of Fire Whirl. Fire Technology, 2016, 52, 263-272	3	23
209	Coherent structures in transitional pipe flow. <i>Physical Review Fluids</i> , 2016 , 1,	2.8	5
208	Role of body stiffness in undulatory swimming: Insights from robotic and computational models. <i>Physical Review Fluids</i> , 2016 , 1,	2.8	36
207	Turbulent drag reduction over air- and liquid- impregnated surfaces. <i>Physics of Fluids</i> , 2016 , 28, 015103	4.4	91
206	The inertial subrange in turbulent pipe flow: centreline. <i>Journal of Fluid Mechanics</i> , 2016 , 788, 602-613	3.7	8
205	Self-similarity of the large-scale motions in turbulent pipe flow. <i>Journal of Fluid Mechanics</i> , 2016 , 792,	3.7	47
204	The evolution of large-scale motions in turbulent pipe flow ©ORRIGENDUM. <i>Journal of Fluid Mechanics</i> , 2016 , 795, 973-974	3.7	1
203	A direct measure of the frequency response of hot-wire anemometers: temporal resolution issues in wall-bounded turbulence. <i>Experiments in Fluids</i> , 2015 , 56, 1	2.5	32

(2014-2015)

202	Errors in parallel-plate and cone-plate rheometer measurements due to sample underfill. <i>Measurement Science and Technology</i> , 2015 , 26, 015301	2	20
201	On the universality of inertial energy in the log layer of turbulent boundary layer and pipe flows. <i>Experiments in Fluids</i> , 2015 , 56, 1	2.5	22
200	A new method for measuring turbulent heat fluxes using PIV and fast-response cold-wires. <i>Experiments in Fluids</i> , 2015 , 56, 1	2.5	2
199	Spectral scaling in boundary layers and pipes at very high Reynolds numbers. <i>Journal of Fluid Mechanics</i> , 2015 , 771, 303-326	3.7	70
198	Dynamic stall in vertical axis wind turbines: Comparing experiments and computations. <i>Journal of Wind Engineering and Industrial Aerodynamics</i> , 2015 , 146, 163-171	3.7	78
197	The structure of the wake generated by a submarine model in yaw. Experiments in Fluids, 2015, 56, 1	2.5	8
196	Generating an artificially thickened boundary layer to simulate the neutral atmospheric boundary layer. <i>Journal of Wind Engineering and Industrial Aerodynamics</i> , 2015 , 145, 1-16	3.7	8
195	Canonical wall-bounded flows: how do they differ?. Journal of Fluid Mechanics, 2015, 774, 1-4	3.7	13
194	Turbulent boundary layer statistics at very high Reynolds number. <i>Journal of Fluid Mechanics</i> , 2015 , 779, 371-389	3.7	72
193	Asymmetries in the wake of a submarine model in pitch. <i>Journal of Fluid Mechanics</i> , 2015 , 774, 416-442	3.7	17
192	Maximizing the efficiency of a flexible propulsor using experimental optimization. <i>Journal of Fluid Mechanics</i> , 2015 , 767, 430-448	3.7	90
191	The evolution of large-scale motions in turbulent pipe flow. <i>Journal of Fluid Mechanics</i> , 2015 , 779, 701-7	7135 ₇	32
190	Particle response analysis for particle image velocimetry in supersonic flows. <i>Physics of Fluids</i> , 2015 , 27, 076101	4.4	29
189	Linear instability mechanisms leading to optimally efficient locomotion with flexible propulsors. <i>Physics of Fluids</i> , 2014 , 26, 041905	4.4	38
188	Estimating the value of von Kamaa constant in turbulent pipe flow. <i>Journal of Fluid Mechanics</i> , 2014 , 749, 79-98	3.7	68
187	Propulsive performance of unsteady tandem hydrofoils in a side-by-side configuration. <i>Physics of Fluids</i> , 2014 , 26, 041903	4.4	54
186	Scaling the propulsive performance of heaving flexible panels. <i>Journal of Fluid Mechanics</i> , 2014 , 738, 250-267	3.7	144
185	. Journal of Microelectromechanical Systems, 2014 , 23, 899-907	2.5	26

184	Unsteady propulsion near a solid boundary. <i>Journal of Fluid Mechanics</i> , 2014 , 742, 152-170	3.7	93
183	Flexible propulsors in ground effect. <i>Bioinspiration and Biomimetics</i> , 2014 , 9, 036008	2.6	85
182	The energetic motions in turbulent pipe flow. <i>Physics of Fluids</i> , 2014 , 26, 125102	4.4	32
181	Propulsive performance of unsteady tandem hydrofoils in an in-line configuration. <i>Physics of Fluids</i> , 2014 , 26, 051901	4.4	83
180	Vortex and structural dynamics of a flexible cylinder in cross-flow. <i>Physics of Fluids</i> , 2014 , 26, 053605	4.4	3
179	The Swimming of Manta Rays. Lecture Notes in Mechanical Engineering, 2014, 291-300	0.4	4
178	Wall-bounded turbulence. <i>Physics Today</i> , 2013 , 66, 25-30	0.9	43
177	The flow field and axial thrust generated by a rotating rigid helix at low Reynolds numbers. <i>Experimental Thermal and Fluid Science</i> , 2013 , 46, 1-7	3	12
176	Scaling laws for the thrust production of flexible pitching panels. <i>Journal of Fluid Mechanics</i> , 2013 , 732, 29-46	3.7	147
175	Logarithmic scaling of turbulence in smooth- and rough-wall pipe flow. <i>Journal of Fluid Mechanics</i> , 2013 , 728, 376-395	3.7	93
174	The appearance of P+S modes in the wake of a freely vibrating, highly flexible cylinder. <i>Journal of Fluids and Structures</i> , 2013 , 43, 481-486	3.1	3
173	The turbulent wake of a submarine model in pitch and yaw. 2013,		7
172	Turbulence spectra in smooth- and rough-wall pipe flow at extreme Reynolds numbers. <i>Journal of Fluid Mechanics</i> , 2013 , 731, 46-63	3.7	68
171	On the logarithmic region in wall turbulence. <i>Journal of Fluid Mechanics</i> , 2013 , 716,	3.7	365
170	Drag reduction on grooved cylinders in the critical Reynolds number regime. <i>Experimental Thermal and Fluid Science</i> , 2013 , 48, 15-18	3	33
169	Dynamic calibration and modeling of a cold wire for temperature measurement. <i>Measurement Science and Technology</i> , 2013 , 24, 125301	2	22
168	Obtaining accurate mean velocity measurements in high Reynolds number turbulent boundary layers using Pitot tubes. <i>Journal of Fluid Mechanics</i> , 2013 , 715, 642-670	3.7	48
167	Turbulent pipe flow downstream of a bend. <i>Journal of Fluid Mechanics</i> , 2013 , 735,	3.7	41

(2011-2013)

166	A viscoelastic model of shear-induced hemolysis in laminar flow. <i>Biorheology</i> , 2013 , 50, 45-55	1.7	26
165	On the relationship between efficiency and wake structure of a batoid-inspired oscillating fin. <i>Journal of Fluid Mechanics</i> , 2012 , 691, 245-266	3.7	51
164	Hot-wire spatial resolution effects in measurements of grid-generated turbulence. <i>Experiments in Fluids</i> , 2012 , 53, 1713-1722	2.5	27
163	Turbulent pipe flow at extreme Reynolds numbers. <i>Physical Review Letters</i> , 2012 , 108, 094501	7.4	213
162	Wake structures behind a swimming robotic lamprey with a passively flexible tail. <i>Journal of Experimental Biology</i> , 2012 , 215, 416-25	3	50
161	Hydrodynamic wake resonance as an underlying principle of efficient unsteady propulsion. <i>Journal of Fluid Mechanics</i> , 2012 , 708, 329-348	3.7	51
160	Experimental characterization of three-dimensional corner flows at low Reynolds numbers. <i>Journal of Fluid Mechanics</i> , 2012 , 707, 37-52	3.7	3
159	Flow Visualization 2012 ,		33
158	HighReynolds Number Wall Turbulence. Annual Review of Fluid Mechanics, 2011, 43, 353-375	22	506
157	Experiments on the Influence of a Microramp Array on a Hypersonic Shock Turbulent Boundary Layer Interaction 2011 ,		6
156	Turbulence Measurements with PIV in a Hypersonic Shock Boundary Layer Interaction 2011,		2
155	Bioinspired Propulsion Mechanisms Based on Manta Ray Locomotion. <i>Marine Technology Society Journal</i> , 2011 , 45, 110-118	0.5	41
154	Vortex suppression and drag reduction in the wake of counter-rotating cylinders. <i>Journal of Fluid Mechanics</i> , 2011 , 679, 343-382	3.7	68
153	Spatial resolution correction for wall-bounded turbulence measurements. <i>Journal of Fluid Mechanics</i> , 2011 , 676, 41-53	3.7	78
152	The unsteady three-dimensional wake produced by a trapezoidal pitching panel. <i>Journal of Fluid Mechanics</i> , 2011 , 685, 117-145	3.7	98
151	Tip and Junction Vortices Generated by the Sail of a Yawed Submarine Model at Low Reynolds Numbers. <i>Journal of Fluids Engineering, Transactions of the ASME</i> , 2011 , 133,	2.1	4
150	Scaling the circulation shed by a pitching panel. <i>Journal of Fluid Mechanics</i> , 2011 , 688, 591-601	3.7	22

148	Turbulence measurements in pipe flow using a nano-scale thermal anemometry probe. <i>Experiments in Fluids</i> , 2011 , 51, 1521-1527	2.5	64
147	A new criterion for end-conduction effects in hot-wire anemometry. <i>Measurement Science and Technology</i> , 2011 , 22, 055401	2	17
146	Visualizing the very-large-scale motions in turbulent pipe flow. <i>Physics of Fluids</i> , 2011 , 23, 011703	4.4	54
145	Effects of hot-wire length on the measurement of turbulent spectra in anisotropic flows. <i>Measurement Science and Technology</i> , 2010 , 21, 105407	2	11
144	Using hyperbolic Lagrangian coherent structures to investigate vortices in bioinspired fluid flows. <i>Chaos</i> , 2010 , 20, 017510	3.3	46
143	Wall-bounded turbulent flows at high Reynolds numbers: Recent advances and key issues. <i>Physics of Fluids</i> , 2010 , 22, 065103	4.4	471
142	Model of accommodation: contributions of lens geometry and mechanical properties to the development of presbyopia. <i>Journal of Cataract and Refractive Surgery</i> , 2010 , 36, 1960-71	2.3	19
141	Temperature corrections for constant temperature and constant current hot-wire anemometers. <i>Measurement Science and Technology</i> , 2010 , 21, 105404	2	51
140	PIV Experiments on a Rough Wall Hypersonic Turbulent Boundary Layer 2010 ,		10
139	Experimental investigation of the structure of large- and very-large-scale motions in turbulent pipe flow. <i>Journal of Fluid Mechanics</i> , 2010 , 651, 339-356	3.7	52
138	Scaling of near-wall turbulence in pipe flow. Journal of Fluid Mechanics, 2010, 649, 103-113	3.7	66
137	Scaling of global properties of turbulence and skin friction in pipe and channel flows. <i>Journal of Fluid Mechanics</i> , 2010 , 652, 65-73	3.7	25
136	The intermediate wake of a body of revolution at high Reynolds numbers. <i>Journal of Fluid Mechanics</i> , 2010 , 659, 516-539	3.7	43
135	Turbulence measurements using a nanoscale thermal anemometry probe. <i>Journal of Fluid Mechanics</i> , 2010 , 663, 160-179	3.7	100
134	The Effects of Fins on the Intermediate Wake of a Submarine Model. <i>Journal of Fluids Engineering, Transactions of the ASME,</i> 2010 , 132,	2.1	18
133	High Reynolds Number Wall-Bounded Turbulence and a Proposal for a New Eddy-Based Model. <i>Notes on Numerical Fluid Mechanics and Multidisciplinary Design</i> , 2010 , 51-62	0.3	5
132	Turbulence in Pipe Flows with Small Relative Roughness. <i>IUTAM Symposium on Cellular, Molecular and Tissue Mechanics</i> , 2010 , 33-42	0.3	
131	Measurement of local dissipation scales in turbulent pipe flow. <i>Physical Review Letters</i> , 2009 , 103, 0145	072.4	27

130	Effects of Roughness on a Turbulent Bloundary Layer in Hypersonic Flow 2009 ,		7
129	Structure of Large- and Very Large-Scale Motions in Turbulent Pipe Flow 2009,		1
128	Experimental Investigation of Hypersonic Turbulent Boundary Layer 2009,		12
127	Experimental Study of a Mach 3 Compression Ramp Interaction at Re{theta} = 2400. <i>AIAA Journal</i> , 2009 , 47, 373-385	2.1	52
126	Aero-Optic Distortion in Transonic and Hypersonic Turbulent Boundary Layers. <i>AIAA Journal</i> , 2009 , 47, 2158-2168	2.1	62
125	Flow in a commercial steel pipe. <i>Journal of Fluid Mechanics</i> , 2008 , 595, 323-339	3.7	62
124	The wake structure and thrust performance of a rigid low-aspect-ratio pitching panel. <i>Journal of Fluid Mechanics</i> , 2008 , 603, 331-365	3.7	148
123	Effects of three-dimensionality on thrust production by a pitching panel. <i>Journal of Fluid Mechanics</i> , 2008 , 615, 211-220	3.7	50
122	Azimuthal structure of turbulence in high Reynolds number pipe flow. <i>Journal of Fluid Mechanics</i> , 2008 , 615, 121-138	3.7	53
121	Thrust performance of unsteady propulsors using a novel measurement system, and corresponding wake patterns. <i>Experiments in Fluids</i> , 2008 , 45, 461-472	2.5	16
120	Scaling of the wall-normal turbulence component in high-Reynolds-number pipe flow. <i>Journal of Fluid Mechanics</i> , 2007 , 576, 457-473	3.7	36
119	Flowfield measurements in the wake of a robotic lamprey. <i>Experiments in Fluids</i> , 2007 , 43, 683-690	2.5	41
118	Turbulent flow in smooth and rough pipes. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2007 , 365, 699-714	3	64
117	Further support for Townsend Reynolds number similarity hypothesis in high Reynolds number rough-wall pipe flow. <i>Physics of Fluids</i> , 2007 , 19, 055109	4.4	15
116	Wall-Pressure Measurements in a Mach 3 Shock-Wave Turbulent Boundary Layer Interaction at a DNS Accessible Reynolds Number 2007 ,		11
115	Turbulence Characteristics in High-Reynolds-Number Rough-Wall Pipe Flow 2006 ,		2
114	Comparison of Aero-Optic Distortion in Hypersonic and Transonic, Turbulent Boundary Layers with Gas Injection 2006 ,		4
113	Visualizations of the Unsteady Wake of Manta Ray Model 2006 ,		1

112	Characterization of the Turbulence Structure in Supersonic Boundary Layers Using DNS Data 2006,		12
111	Development of NSTAP: Nanoscale Thermal Anemometry Probe 2006 ,		7
110	The Turbulence Structure of Shockwave and Boundary Layer Interactions in a Compression Corner 2006 ,		5
109	Roughness effects in turbulent pipe flow. <i>Journal of Fluid Mechanics</i> , 2006 , 564, 267	3.7	153
108	Experimental study of a NeimarkBacker bifurcation in axially forced TaylorDouette flow. <i>Journal of Fluid Mechanics</i> , 2006 , 558, 1	3.7	13
107	Thrust production and wake structure of a batoid-inspired oscillating fin. <i>Journal of Fluid Mechanics</i> , 2006 , 562, 415-429	3.7	103
106	Binormal cooling errors in crossed hot-wire measurements. Experiments in Fluids, 2006, 40, 212-217	2.5	4
105	Turbulence in Supersonic and Hypersonic Boundary Layers. <i>Solid Mechanics and Its Applications</i> , 2006 , 221-230	0.4	3
104	A new friction factor relationship for fully developed pipe flow. <i>Journal of Fluid Mechanics</i> , 2005 , 538, 429	3.7	116
103	Measurement of Aero-Optic Distortion in Transonic and Hypersonic, Turbulent Boundary Layers with Gas Injection 2005 ,		3
103			3 54
	with Gas Injection 2005 ,		
102	with Gas Injection 2005, New Experimental Data of STBLI at DNS/LES Accessible Reynolds Numbers 2005, Analysis of Shockwave/Turbulent Boundary Layer Interaction Using DNS and Experimental Data		54
102	with Gas Injection 2005, New Experimental Data of STBLI at DNS/LES Accessible Reynolds Numbers 2005, Analysis of Shockwave/Turbulent Boundary Layer Interaction Using DNS and Experimental Data 2005,	3.7	54 10
102	with Gas Injection 2005, New Experimental Data of STBLI at DNS/LES Accessible Reynolds Numbers 2005, Analysis of Shockwave/Turbulent Boundary Layer Interaction Using DNS and Experimental Data 2005, Experimental Investigations of Mach 3 Shock-Wave Turbulent Boundary Layer Interactions 2005, On the evolution of the wake structure produced by a low-aspect-ratio pitching panel. <i>Journal of</i>	3·7 4·4	54 10 33
10210110099	with Gas Injection 2005, New Experimental Data of STBLI at DNS/LES Accessible Reynolds Numbers 2005, Analysis of Shockwave/Turbulent Boundary Layer Interaction Using DNS and Experimental Data 2005, Experimental Investigations of Mach 3 Shock-Wave Turbulent Boundary Layer Interactions 2005, On the evolution of the wake structure produced by a low-aspect-ratio pitching panel. <i>Journal of Fluid Mechanics</i> , 2005, 564, 433-443 Experimental evidence for Plotkin model of shock unsteadiness in separated flow. <i>Physics of Fluids</i> ,		541033140
1021011009998	New Experimental Data of STBLI at DNS/LES Accessible Reynolds Numbers 2005, Analysis of Shockwave/Turbulent Boundary Layer Interaction Using DNS and Experimental Data 2005, Experimental Investigations of Mach 3 Shock-Wave Turbulent Boundary Layer Interactions 2005, On the evolution of the wake structure produced by a low-aspect-ratio pitching panel. <i>Journal of Fluid Mechanics</i> , 2005, 564, 433-443 Experimental evidence for Plotkin model of shock unsteadiness in separated flow. <i>Physics of Fluids</i> , 2005, 17, 018107 Applications of dense gases to model testing for aeronautical and hydrodynamic applications.	4.4	54 10 33 140 25

(2001-2004)

94	A new calibration method for crossed hot wires. Measurement Science and Technology, 2004, 15, 1926-1	9 <u>3</u> 1	7
93	Quantitative visualization of compressible turbulent shear flows using condensate-enhanced Rayleigh scattering. <i>Experiments in Fluids</i> , 2004 , 37, 438-454	2.5	61
92	Three-dimensional structure of a low-Reynolds-number turbulent boundary layer. <i>Journal of Fluid Mechanics</i> , 2004 , 512,	3.7	23
91	Friction factors for smooth pipe flow. <i>Journal of Fluid Mechanics</i> , 2004 , 511, 41-44	3.7	120
90	Scaling of the streamwise velocity component in turbulent pipe flow. <i>Journal of Fluid Mechanics</i> , 2004 , 508, 99-131	3.7	165
89	Further observations on the mean velocity distribution in fully developed pipe flow. <i>Journal of Fluid Mechanics</i> , 2004 , 501, 135-147	3.7	209
88	Revised Log-Law Constants for Fully-Developed Turbulent Pipe Flow. <i>Fluid Mechanics and Its Applications</i> , 2004 , 265-270	0.2	1
87	Preliminary Crossed Hot-Wire Measurements in High Reynolds Number Turbulent Pipe Flow 2003 , 69		
86	Pitot probe corrections in fully developed turbulent pipe flow. <i>Measurement Science and Technology</i> , 2003 , 14, 1449-1458	2	46
85	Large-Scale Structures in a Compressible Mixing Layer over a Cavity. <i>AIAA Journal</i> , 2003 , 41, 2410-2419	2.1	12
84	Flapping Membranes for Thrust Production. Fluid Mechanics and Its Applications, 2003, 115-124	0.2	2
83	Reynolds number dependence of streamwise velocity spectra in turbulent pipe flow. <i>Physical Review Letters</i> , 2002 , 88, 214501	7.4	27
82	Static pressure correction in high Reynolds number fully developed turbulent pipe flow. <i>Measurement Science and Technology</i> , 2002 , 13, 1608-1614	2	44
81	Effects of transverse helium injection on hypersonic boundary layers. <i>Physics of Fluids</i> , 2001 , 13, 3025-3	0 <u>4.4</u>	22
80	ENERGY HARVESTING EEL. Journal of Fluids and Structures, 2001, 15, 629-640	3.1	379
79	Calibration of the Preston probe for high Reynolds number flows. <i>Measurement Science and Technology</i> , 2001 , 12, 495-501	2	2
78	Shock unsteadiness in a reattaching shear layer. <i>Journal of Fluid Mechanics</i> , 2001 , 429, 155-185	3.7	43
77	Self-Sustaining Mechanisms of Wall Turbulence. <i>Lecture Notes in Physics</i> , 2001 , 17-38	0.8	5

76	Transition studies on an elliptic cone in Mach 8 flow using Filtered Rayleigh Scattering. <i>European Journal of Mechanics, B/Fluids</i> , 2000 , 19, 695-706	2.4	23
75	Numerical and Experimental Investigation of Double-Cone Shock Interactions. <i>AIAA Journal</i> , 2000 , 38, 2268-2276	2.1	46
74	Mean Flowfield Scaling of Supersonic Shock-Free Three-Dimensional Turbulent Boundary Layer. AIAA Journal, 2000 , 38, 2120-2126	2.1	1
73	Flow Visualization 2000,		45
72	High Reynolds number flows - A challenge for experiment and simulation 1999,		1
71	Response to Bcaling of the intermediate region in wall-bounded turbulence: The power law[Phys. Fluids 10, 1043 (1998)]. <i>Physics of Fluids</i> , 1998 , 10, 1045-1046	4.4	15
70	Mean-flow scaling of turbulent pipe flow. <i>Journal of Fluid Mechanics</i> , 1998 , 373, 33-79	3.7	505
69	Summary and appraisal of self-sustaining mechanisms of wall turbulence. I 1998,		1
68	Turbulence measurements in a three-dimensional boundary layer in supersonic flow. <i>Journal of Fluid Mechanics</i> , 1998 , 372, 1-23	3.7	23
67	Scaling of the Mean Velocity Profile for Turbulent Pipe Flow. <i>Physical Review Letters</i> , 1997 , 78, 239-242	7.4	97
66	Delaying transition in TaylorLouette flow with axial motion of the inner cylinder. <i>Journal of Fluid Mechanics</i> , 1997 , 348, 141-151	3.7	34
65	Supersonic Turbulent Boundary Layer Subjected to Step Changes in Wall Temperature. <i>AIAA Journal</i> , 1997 , 35, 51-57	2.1	27
64	Wavelet Analysis of Wall-Pressure Fluctuations in a Supersonic Blunt-Fin Flow. <i>AIAA Journal</i> , 1997 , 35, 1597-1603	2.1	24
63	Lateral straining of turbulent boundary layers. Part 2. Streamline convergence. <i>Journal of Fluid Mechanics</i> , 1997 , 349, 1-30	3.7	10
62	The effects of successive distortions on a turbulent boundary layer in a supersonic flow. <i>Journal of Fluid Mechanics</i> , 1997 , 351, 253-288	3.7	16
61	Log laws or power laws: The scaling in the overlap region. <i>Physics of Fluids</i> , 1997 , 9, 2094-2100	4.4	106
60	Characteristic scales for energetic eddies in turbulent supersonic boundary layers. <i>Experimental Thermal and Fluid Science</i> , 1997 , 14, 85-91	3	7
59	Compressibility VS. Density Variations and the Structure of Turbulence: A Viewpoint from Experiments. <i>Fluid Mechanics and Its Applications</i> , 1997 , 309-316	0.2	

(1991-1996)

58	Measurements of the mean heat transfer in a shock wave-turbulent boundary layer interaction. <i>Experimental Thermal and Fluid Science</i> , 1996 , 12, 87-97	3	13
57	Visualization of the structure of supersonic turbulent boundary layers. <i>Experiments in Fluids</i> , 1995 , 18, 288-302	2.5	57
56	A study of the effects of curvature and compression on the behavior of a supersonic turbulent boundary layer. <i>Experiments in Fluids</i> , 1995 , 18, 363-369	2.5	17
55	Horseshoe vortex systems resulting from the interaction between a laminar boundary layer and a transverse jet. <i>Physics of Fluids</i> , 1995 , 7, 153-158	4.4	139
54	Flow visualization of the three-dimensional, time-evolving structure of a turbulent boundary layer. <i>Physics of Fluids</i> , 1994 , 6, 577-587	4.4	18
53	A combined experimental and numerical study of a three-dimensional supersonic turbulent boundary layer. <i>Experimental Thermal and Fluid Science</i> , 1994 , 9, 156-164	3	3
52	The Physics of Supersonic Turbulent Boundary Layers. Annual Review of Fluid Mechanics, 1994, 26, 287-	3 19	164
51	The structure of a supersonic turbulent boundary layer subjected to concave surface curvature. <i>Journal of Fluid Mechanics</i> , 1994 , 259, 1-24	3.7	51
50	The effects of steamline curvature and pressure gradient on the behavior of turbulent boundary layers in supersonic flow 1994 ,		3
49	Time-sequenced and spectrally filtered Rayleigh imaging of shock wave and boundary layer structure for inlet characterization 1993 ,		8
48	Heat transfer enhancement in a transitional channel flow. <i>Journal of Wind Engineering and Industrial Aerodynamics</i> , 1993 , 49, 257-267	3.7	1
47	Simultaneous measurement of velocity and temperature fluctuations in the boundary layer of a supersonic flow. <i>Experimental Thermal and Fluid Science</i> , 1993 , 7, 221-229	3	33
46	Wall pressure fluctuations in the reattachment region of a supersonic free shear layer. <i>Experiments in Fluids</i> , 1993 , 14, 10-16	2.5	13
45	Multiple distortion of a supersonic turbulent boundary layer. <i>Flow, Turbulence and Combustion</i> , 1993 , 51, 223-229		2
44	Multiple Distortion of a Supersonic Turbulent Boundary Layer. <i>Fluid Mechanics and Its Applications</i> , 1993 , 223-229	0.2	
43	A Combined Experimental and Numerical Study of a Three-Dimensional Supersonic Turbulent Boundary Layer 1993 , 721-730		
42	The interplay between experiments and computation in the study of turbulence. <i>Experimental Thermal and Fluid Science</i> , 1992 , 5, 579-585	3	2
41	Chaotic advection in a complex annular geometry. <i>Physics of Fluids A, Fluid Dynamics</i> , 1991 , 3, 1063-106	7	3

40	Convection velocity in supersonic turbulent boundary layers. <i>Physics of Fluids A, Fluid Dynamics</i> , 1991 , 3, 3124-3126		15
39	Effect of periodic blowing on attached and separated supersonic turbulent boundary layers. <i>AIAA Journal</i> , 1991 , 29, 1651-1658	2.1	34
38	The rapid expansion of a turbulent boundary layer in a supersonic flow. <i>Theoretical and Computational Fluid Dynamics</i> , 1991 , 2, 319-328	2.3	49
37	On the structure of high-Reynolds-number supersonic turbulent boundary layers. <i>Journal of Fluid Mechanics</i> , 1991 , 222, 293	3.7	70
36	A turbulent flow over a curved hill. Part 2. Effects of streamline curvature and streamwise pressure gradient. <i>Journal of Fluid Mechanics</i> , 1991 , 232, 377	3.7	29
35	Effect of short regions of surface curvature on compressible turbulent boundary layers. <i>AIAA Journal</i> , 1990 , 28, 113-119	2.1	9
34	A supersonic turbulent boundary layer in an adverse pressure gradient. <i>Journal of Fluid Mechanics</i> , 1990 , 211, 285-307	3.7	52
33	Turbulent boundary layer relaxation from convex curvature. <i>Journal of Fluid Mechanics</i> , 1990 , 211, 529-	5 <i>5.6</i>	39
32	Analysis of a rapidly distorted, supersonic, turbulent boundary layer. <i>Physics of Fluids A, Fluid Dynamics</i> , 1989 , 1, 1855-1864		8
31	A comparison of the turbulence structure of subsonic and supersonic boundary layers. <i>Physics of Fluids A, Fluid Dynamics</i> , 1989 , 1, 1865-1875		67
30	Response of a compressible, turbulent boundary layer to a short region of surface curvature. <i>AIAA Journal</i> , 1989 , 27, 23-28	2.1	5
29	Turbulence structure in a shock wave/turbulent boundary-layer interaction. AIAA Journal, 1989, 27, 862	-869	84
28	Compressible boundary-layer density cross sections by UV Rayleigh scattering. <i>Optics Letters</i> , 1989 , 14, 916-8	3	49
27	A turbulent flow over a curved hill Part 1. Growth of an internal boundary layer. <i>Journal of Fluid Mechanics</i> , 1987 , 182, 47	3.7	61
26	Organized structures in a compressible, turbulent boundary layer. <i>Journal of Fluid Mechanics</i> , 1987 , 182, 85	3.7	75
25	Experimental study of three shock wave/turbulent boundary layer interactions. <i>Journal of Fluid Mechanics</i> , 1987 , 182, 291	3.7	136
24	The response of a compressible turbulent boundary layer to short regions of concave surface curvature. <i>Journal of Fluid Mechanics</i> , 1987 , 175, 343	3.7	49
23	The relaxation of a turbulent boundary layer far downstream of a short region of convex curvature 1987,		1

22	Low Reynolds Number Turbulent Boundary Layers on a Smooth Flat Surface in a Zero Pressure Gradient 1987 , 186-196		15
21	The Response of Turbulent Boundary Layers to Sudden Perturbations. <i>Annual Review of Fluid Mechanics</i> , 1985 , 17, 321-358	22	133
20	The Behaviour of a Compressible Turbulent Boundary Layer Under Incipient Separation Conditions 1985 , 235-245		О
19	Hot-wire Investigation of an Unseparated Shock-VVave/Turbulent Boundary-Layer Interaction. <i>AIAA Journal</i> , 1984 , 22, 579-585	2.1	17
18	The static response of a bowed inclined hot wire. <i>Experiments in Fluids</i> , 1984 , 2, 183-187	2.5	
17	Constant temperature hot-wire anemometer practice in supersonic flows. <i>Experiments in Fluids</i> , 1984 , 2, 33-41	2.5	15
16	Turbulence Measurements in a Compressible Reattaching Shear Layer. <i>AIAA Journal</i> , 1984 , 22, 889-895	2.1	43
15	Constant temperature hot-wire anemometer practice in supersonic flows. <i>Experiments in Fluids</i> , 1983 , 1, 83-92	2.5	112
14	Low-Reynolds-Number Turbulent Boundary Layers in Zero and Favorable Pressure Gradients. Journal of Ship Research, 1983 , 27, 147-157	0.9	69
13	Turbulence Measurements in Two Shock-Wave/ Shear-Layer Interactions 1983, 279-288		7
12	Scaling Parameters for a Time-Averaged Separation Bubble. <i>Journal of Fluids Engineering, Transactions of the ASME</i> , 1982 , 104, 178-184	2.1	17
11	Turbulent Boundary Layers on Bodies of Revolution. <i>Journal of Ship Research</i> , 1982 , 26, 135-147	0.9	20
10	A note on hot-wire anemometer measurements of turbulence in the presence of temperature fluctuations. <i>Journal of Physics E: Scientific Instruments</i> , 1981 , 14, 311-312		9
9	The effect of varying resistance ratio on the behaviour of constant-temperature hot-wire anemometers. <i>Journal of Physics E: Scientific Instruments</i> , 1980 , 13, 451-456		14
8	Optimization of LDV geometry. Applied Optics, 1979, 18, 1097-100	1.7	O
7	The effect of short regions of high surface curvature on turbulent boundary layers. <i>Journal of Fluid Mechanics</i> , 1979 , 94, 209-242	3.7	129
6	The response of a turbulent boundary layer to lateral divergence. <i>Journal of Fluid Mechanics</i> , 1979 , 94, 243-268	3.7	48
5	The effects of certain low frequency phenomena on the calibration of hot wires. <i>Journal of Fluid Mechanics</i> , 1979 , 90, 415-431	3.7	44

4	The response to temperature fluctuations of a constant-current hot-wire anemometer. <i>Journal of Physics E: Scientific Instruments</i> , 1978 , 11, 909-914		36
3	Spatial resolution correction for wall-bounded turbulence measurements		2
2	Turbulent drag reduction over liquid-infused textured surfaces: effect of the interface dynamics. Journal of Turbulence,1-32	1	
1	The Effect of Offset on Burner Fire Whirls. <i>Combustion Science and Technology</i> ,1-24	5	О