barbara Bellei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4255207/publications.pdf

Version: 2024-02-01

257450 302126 1,574 43 24 39 h-index citations g-index papers 43 43 43 2237 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Therapeutic potential of adipose tissueâ€derivatives in modern dermatology. Experimental Dermatology, 2022, 31, 1837-1852.	2.9	14
2	Research update of adipose tissue-based therapies in regenerative dermatology. Stem Cell Reviews and Reports, 2022, 18, 1956-1973.	3.8	8
3	Focus on the Contribution of Oxidative Stress in Skin Aging. Antioxidants, 2022, 11, 1121.	5.1	63
4	Simultaneous Targeting Tumor Cells and Cancer-Associated Fibroblasts with a Paclitaxel–Hyaluronan Bioconjugate: In Vitro Evaluation in Non-Melanoma Skin Cancer. Biomedicines, 2021, 9, 597.	3.2	6
5	Alterations of the pigmentation system in the aging process. Pigment Cell and Melanoma Research, 2021, 34, 800-813.	3.3	25
6	Profiling Cancer-Associated Fibroblasts in Melanoma. International Journal of Molecular Sciences, 2021, 22, 7255.	4.1	28
7	Evaluation of Hedgehog Pathway Inhibition on Nevoid Basal Cell Carcinoma Syndrome Fibroblasts and Basal Cell Carcinoma-Associated Fibroblasts: Are Vismodegib and Sonidegib Useful to Target Cancer-Prone Fibroblasts?. Cancers, 2021, 13, 5858.	3.7	3
8	Premature cell senescence in human skin: Dual face in chronic acquired pigmentary disorders. Ageing Research Reviews, 2020, 57, 100981.	10.9	55
9	A Framework of Major Tumor-Promoting Signal Transduction Pathways Implicated in Melanoma-Fibroblast Dialogue. Cancers, 2020, 12, 3400.	3.7	14
10	Adipose tissue stromal vascular fraction and adipose tissue stromal vascular fraction plus <scp>plateletâ€rich</scp> plasma grafting: New regenerative perspectives in genital lichen sclerosus. Dermatologic Therapy, 2020, 33, e14277.	1.7	13
11	Extracellular fraction of adipose tissue as an innovative regenerative approach for vitiligo treatment. Experimental Dermatology, 2019, 28, 695-703.	2.9	16
12	Involvement of nonâ€melanocytic skin cells in vitiligo. Experimental Dermatology, 2019, 28, 667-673.	2.9	35
13	Inhibition of Stearoyl-CoA desaturase 1 reverts BRAF and MEK inhibition-induced selection of cancer stem cells in BRAF-mutated melanoma. Journal of Experimental and Clinical Cancer Research, 2018, 37, 318.	8.6	66
14	Adipose tissue-derived extracellular fraction characterization: biological and clinical considerations in regenerative medicine. Stem Cell Research and Therapy, 2018, 9, 207.	5.5	52
15	Energetic mitochondrial failing in vitiligo and possible rescue by cardiolipin. Scientific Reports, 2017, 7, 13663.	3.3	38
16	Maximizing non-enzymatic methods for harvesting adipose-derived stem from lipoaspirate: technical considerations and clinical implications for regenerative surgery. Scientific Reports, 2017, 7, 10015.	3.3	41
17	The activation of PPARÎ ³ by 2,4,6-Octatrienoic acid protects human keratinocytes from UVR-induced damages. Scientific Reports, 2017, 7, 9241.	3.3	13
18	The \hat{l} ±-melanocyte stimulating hormone/peroxisome proliferator activated receptor- \hat{l} 3 pathway down-regulates proliferation in melanoma cell lines. Journal of Experimental and Clinical Cancer Research, 2017, 36, 142.	8.6	20

#	Article	IF	Citations
19	The role of WNT/ \hat{l}^2 -catenin signaling pathway in melanoma epithelial-to-mesenchymal-like switching: evidences from patients-derived cell lines. Oncotarget, 2016, 7, 43295-43314.	1.8	63
20	miR-211 and MITF modulation by Bcl-2 protein in melanoma cells. Molecular Carcinogenesis, 2016, 55, 2304-2312.	2.7	23
21	Modulation of PPARÎ ³ Provides New Insights in a Stress Induced Premature Senescence Model. PLoS ONE, 2014, 9, e104045.	2.5	27
22	Monozygotic twins discordant for recessive dystrophic epidermolysis bullosa phenotype highlight the role of TGF-Î ² signalling in modifying disease severity. Human Molecular Genetics, 2014, 23, 3907-3922.	2.9	88
23	Fat and epidermal cell suspension grafting: a new advanced one-step skin regeneration surgical technique. Journal of Experimental and Clinical Cancer Research, 2014, 33, 23.	8.6	11
24	Pyridinyl imidazole compounds interfere with melanosomes sorting through the inhibition of Cyclin G-associated Kinase, a regulator of cathepsins maturation. Cellular Signalling, 2014, 26, 716-723.	3.6	12
25	SLN melanoma micrometastasis predictivity of nodal status: a long term retrospective study. Journal of Experimental and Clinical Cancer Research, 2013, 32, 47.	8.6	4
26	Linking αMSH with PPARγ in B16â€F10 melanoma. Pigment Cell and Melanoma Research, 2013, 26, 113-127.	3.3	21
27	PNA as a potential modulator of COL7A1 gene expression in dominant dystrophic epidermolysis bullosa: a physico-chemical study. Molecular BioSystems, 2013, 9, 3166.	2.9	9
28	Vitiligo: A Possible Model of Degenerative Diseases. PLoS ONE, 2013, 8, e59782.	2.5	79
29	Inhibition of Melanogenesis by the Pyridinyl Imidazole Class of Compounds: Possible Involvement of the Wnt/ \hat{I}^2 -Catenin Signaling Pathway. PLoS ONE, 2012, 7, e33021.	2.5	25
30	<i>In vitro</i> research on vitiligo: strategies, principles, methodological options and common pitfalls. Experimental Dermatology, 2012, 21, 490-496.	2.9	19
31	Wnt/βâ€catenin signaling is stimulated by αâ€melanocyteâ€stimulating hormone in melanoma and melanocyte cells: implication in cell differentiation. Pigment Cell and Melanoma Research, 2011, 24, 309-325.	3.3	80
32	2,4,6â€Octatrienoic acid is a novel promoter of melanogenesis and antioxidant defence in normal human melanocytes via PPARâ€Î³ activation. Pigment Cell and Melanoma Research, 2011, 24, 618-630.	3.3	45
33	Membrane lipid defects are responsible for the generation of reactive oxygen species in peripheral blood mononuclear cells from vitiligo patients. Journal of Cellular Physiology, 2010, 223, 187-193.	4.1	55
34	Role of fibroblast-derived growth factors in regulating hyperpigmentation of solar lentigo. British Journal of Dermatology, 2010, 163, 1020-1027.	1.5	101
35	p38 Regulates Pigmentation via Proteasomal Degradation of Tyrosinase. Journal of Biological Chemistry, 2010, 285, 7288-7299.	3.4	92
36	MC1R stimulation by \hat{l}_{\pm} -MSH induces catalase and promotes its re-distribution to the cell periphery and dendrites. Pigment Cell and Melanoma Research, 2010, 23, 263-275.	3.3	33

#	ARTICLE	IF	CITATIONS
37	Ultraviolet A induced modulation of gap junctional intercellular communication by P38 MAPK activation in human keratinocytes. Experimental Dermatology, 2008, 17, 115-124.	2.9	24
38	Small molecular antioxidants effectively protect from PUVA-induced oxidative stress responses underlying fibroblast senescence and photoaging. Free Radical Biology and Medicine, 2008, 45, 636-644.	2.9	37
39	${\sf GSK3\hat{1}^2}$ inhibition promotes melanogenesis in mouse B16 melanoma cells and normal human melanocytes. Cellular Signalling, 2008, 20, 1750-1761.	3.6	105
40	Association of p53 Arg72Pro polymorphism and \hat{l}^2 -catenin accumulation in mycosis fungoides. British Journal of Dermatology, 2006, 155, 1223-1229.	1.5	11
41	Frequent \hat{l}^2 -catenin overexpression without exon 3 mutation in cutaneous lymphomas. Modern Pathology, 2004, 17, 1275-1281.	5.5	26
42	Expression of Hepatitis C Virus cDNA in Human Hepatoma Cell Line Mediated by a Hybrid Baculovirus–HCV Vector. Virology, 1999, 255, 302-311.	2.4	45
43	The Activity of Differentiation Factors Induces Apoptosis in Polyomavirus Large T-Expressing Myoblasts. Molecular Biology of the Cell, 1998, 9, 1449-1463.	2.1	29