Suzanne Y. O'Reilly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4255206/publications.pdf Version: 2024-02-01

		1980	2940
438	42,451	101	189
papers	citations	h-index	g-index
452 all docs	452 docs citations	452 times ranked	9472 citing authors

#	Article	IF	CITATIONS
1	The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica Et Cosmochimica Acta, 2000, 64, 133-147.	1.6	2,925
2	Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 2002, 61, 237-269.	0.6	2,383
3	lgneous zircon: trace element composition as an indicator of source rock type. Contributions To Mineralogy and Petrology, 2002, 143, 602-622.	1.2	2,041
4	Archean crustal evolution in the northern Yilgarn Craton: U–Pb and Hf-isotope evidence from detrital zircons. Precambrian Research, 2004, 131, 231-282.	1.2	983
5	The growth of the continental crust: Constraints from zircon Hf-isotope data. Lithos, 2010, 119, 457-466.	0.6	697
6	Detrital zircon geochronology of Precambrian basement sequences in the Jiangnan orogen: Dating the assembly of the Yangtze and Cathaysia Blocks. Precambrian Research, 2007, 159, 117-131.	1.2	554
7	The Composition and Evolution of Lithospheric Mantle: a Re-evaluation and its Tectonic Implications. Journal of Petrology, 2009, 50, 1185-1204.	1.1	540
8	Phanerozoic evolution of the lithosphere beneath the Sino-Korean craton. Geodynamic Series, 1998, , 107-126.	0.1	524
9	Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet. Geology, 2006, 34, 745.	2.0	513
10	Zircon Crystal Morphology, Trace Element Signatures and Hf Isotope Composition as a Tool for Petrogenetic Modelling: Examples From Eastern Australian Granitoids. Journal of Petrology, 2006, 47, 329-353.	1.1	502
11	Widespread Archean basement beneath the Yangtze craton. Geology, 2006, 34, 417.	2.0	491
12	The lithospheric architecture of Africa: Seismic tomography, mantle petrology, and tectonic evolution. , 2009, 5, 23-50.		477
13	Apatite as an indicator mineral for mineral exploration: trace-element compositions and their relationship to host rock type. Journal of Geochemical Exploration, 2002, 76, 45-69.	1.5	475
14	The origin and evolution of Archean lithospheric mantle. Precambrian Research, 2003, 127, 19-41.	1.2	432
15	Non-chondritic distribution of the highly siderophile elements in mantle sulphides. Nature, 2000, 407, 891-894.	13.7	428
16	The crust of Cathaysia: Age, assembly and reworking of two terranes. Precambrian Research, 2007, 158, 51-78.	1.2	428
17	Components and episodic growth of Precambrian crust in the Cathaysia Block, South China: Evidence from U–Pb ages and Hf isotopes of zircons in Neoproterozoic sediments. Precambrian Research, 2010, 181, 97-114.	1.2	386
18	The density structure of subcontinental lithosphere through time. Earth and Planetary Science Letters, 2001, 184, 605-621.	1.8	382

#	Article	IF	CITATIONS
19	A Paleoproterozoic orogeny recorded in a long-lived cratonic remnant (Wuyishan terrane), eastern Cathaysia Block, China. Precambrian Research, 2009, 174, 347-363.	1.2	374
20	The nature and timing of crustal thickening in Southern Tibet: Geochemical and zircon Hf isotopic constraints from postcollisional adakites. Tectonophysics, 2009, 477, 36-48.	0.9	373
21	Carbonated peridotite xenoliths from Spitsbergen: implications for trace element signature of mantle carbonate metasomatism. Earth and Planetary Science Letters, 1993, 119, 283-297.	1.8	344
22	Mechanism and timing of lithospheric modification and replacement beneath the eastern North China Craton: Peridotitic xenoliths from the 100 Ma Fuxin basalts and a regional synthesis. Geochimica Et Cosmochimica Acta, 2007, 71, 5203-5225.	1.6	339
23	Relict refractory mantle beneath the eastern North China block: significance for lithosphere evolution. Lithos, 2001, 57, 43-66.	0.6	328
24	Volatile-bearing minerals and lithophile trace elements in the upper mantle. Chemical Geology, 1997, 141, 153-184.	1.4	307
25	3.6 Ga lower crust in central China: New evidence on the assembly of the North China craton. Geology, 2004, 32, 229.	2.0	295
26	Mantle metasomatism beneath western Victoria, Australia: I. Metasomatic processes in Cr-diopside Iherzolites. Geochimica Et Cosmochimica Acta, 1988, 52, 433-447.	1.6	288
27	Where was South China in the Rodinia supercontinent?. Precambrian Research, 2008, 164, 1-15.	1.2	281
28	U–Pb geochronology and Hf–Nd isotopic geochemistry of the Badu Complex, Southeastern China: Implications for the Precambrian crustal evolution and paleogeography of the Cathaysia Block. Precambrian Research, 2012, 222-223, 424-449.	1.2	261
29	Apatite in the mantle: implications for metasomatic processes and high heat production in Phanerozoic mantle. Lithos, 2000, 53, 217-232.	0.6	253
30	Lithospheric, Cratonic, and Geodynamic Setting of Ni-Cu-PGE Sulfide Deposits. Economic Geology, 2010, 105, 1057-1070.	1.8	253
31	Are Lithospheres Forever? Tracking Changes in Subcontinental Lithospheric Mantle Through Time. GSA Today, 2001, 11, 4.	1.1	242
32	The evolution of lithospheric mantle beneath the Kalahari Craton and its margins. Lithos, 2003, 71, 215-241.	0.6	241
33	Layered Mantle Lithosphere in the Lac de Gras Area, Slave Craton: Composition, Structure and Origin. Journal of Petrology, 1999, 40, 705-727.	1.1	235
34	Continental-root control on the genesis of magmatic ore deposits. Nature Geoscience, 2013, 6, 905-910.	5.4	231
35	A xenolith-derived geotherm for southeastern australia and its geophysical implications. Tectonophysics, 1985, 111, 41-63.	0.9	230
36	Nature and Evolution of Cenozoic Lithospheric Mantle beneath Shandong Peninsula, Sino-Korean Craton, Eastern China. International Geology Review, 1998, 40, 471-499.	1.1	224

#	Article	IF	CITATIONS
37	Apatite Composition: Tracing Petrogenetic Processes in Transhimalayan Granitoids. Journal of Petrology, 2009, 50, 1829-1855.	1.1	223
38	Genesis of Young Lithospheric Mantle in Southeastern China: an LAM–ICPMS Trace Element Study. Journal of Petrology, 2000, 41, 111-148.	1.1	219
39	Precambrian crustal evolution of the Yangtze Block tracked by detrital zircons from Neoproterozoic sedimentary rocks. Precambrian Research, 2010, 177, 131-144.	1.2	215
40	The Siberian lithosphere traverse: mantle terranes and the assembly of the Siberian Craton. Tectonophysics, 1999, 310, 1-35.	0.9	212
41	New insights into the Re–Os systematics of sub-continental lithospheric mantle from in situ analysis of sulphides. Earth and Planetary Science Letters, 2002, 203, 651-663.	1.8	212
42	Tracing Cu and Fe from source to porphyry: in situ determination of Cu and Fe isotope ratios in sulfides from the Grasberg Cu–Au deposit. Chemical Geology, 2004, 207, 147-169.	1.4	210
43	Is the continental Moho the crust-mantle boundary?. Geology, 1987, 15, 241.	2.0	205
44	Thermal and petrological structure of the lithosphere beneath Hannuoba, Sino-Korean Craton, China: evidence from xenoliths. Lithos, 2001, 56, 267-301.	0.6	202
45	Multiple origins of clinopyroxenes in alkali basaltic rocks. Lithos, 1979, 12, 115-132.	0.6	197
46	Trace Element Residence and Partitioning in Mantle Xenoliths Metasomatized by Highly Alkaline, Silicate- and Carbonate-rich Melts (Kerguelen Islands, Indian Ocean). Journal of Petrology, 2000, 41, 477-509.	1.1	197
47	Ultramafic Xenoliths from Bullenmerri and Gnotuk Maars, Victoria, Australia: Petrology of a Sub-Continental Crust-Mantle Transition. Journal of Petrology, 1984, 25, 53-87.	1.1	196
48	Quantitative analysis of trace element abundances in glasses and minerals: a comparison of laser ablation inductively coupled plasma mass spectrometry, solution inductively coupled plasma mass spectrometry, proton microprobe and electron microprobe data. Journal of Analytical Atomic Spectrometry, 1998, 13, 477-482.	1.6	196
49	Mineral Chemistry of Peridotites from Paleozoic, Mesozoic and Cenozoic Lithosphere: Constraints on Mantle Evolution beneath Eastern China. Journal of Petrology, 2006, 47, 2233-2256.	1.1	195
50	Lithosphere mapping beneath the North American platea~†. Lithos, 2004, 77, 873-922.	0.6	193
51	India's hidden inputs to Tibetan orogeny revealed by Hf isotopes of Transhimalayan zircons and host rocks. Earth and Planetary Science Letters, 2011, 307, 479-486.	1.8	192
52	In situ Os isotopes in abyssal peridotites bridge the isotopic gap between MORBs and their source mantle. Nature, 2005, 436, 1005-1008.	13.7	190
53	Early crustal evolution in the western Yangtze Block: Evidence from U–Pb and Lu–Hf isotopes on detrital zircons from sedimentary rocks. Precambrian Research, 2012, 222-223, 368-385.	1.2	190
54	The Taihua group on the southern margin of the North China craton: further insights from U–Pb ages and Hf isotope compositions of zircons. Mineralogy and Petrology, 2009, 97, 43-59.	0.4	189

#	Article	IF	CITATIONS
55	U–Pb isotopic ages and Hf isotopic composition of single zircons: The search for juvenile Precambrian continental crust. Precambrian Research, 2005, 139, 42-100.	1.2	187
56	Lithosphere evolution beneath the Kaapvaal Craton: Re–Os systematics of sulfides in mantle-derived peridotites. Chemical Geology, 2004, 208, 89-118.	1.4	186
57	The world turns over: Hadean–Archean crust–mantle evolution. Lithos, 2014, 189, 2-15.	0.6	173
58	In situ measurement of Re-Os isotopes in mantle sulfides by laser ablation multicollector-inductively coupled plasma mass spectrometry: analytical methods and preliminary results. Geochimica Et Cosmochimica Acta, 2002, 66, 1037-1050.	1.6	170
59	Chromitites in ophiolites: How, where, when, why? Part II. The crystallization of chromitites. Lithos, 2014, 189, 140-158.	0.6	170
60	Residence of trace elements in metasomatized spinel lherzolite xenoliths: a proton-microprobe study. Contributions To Mineralogy and Petrology, 1991, 109, 98-113.	1.2	169
61	The trapped fluid phase in upper mantle xenoliths from Victoria, Australia: implications for mantle metasomatism. Contributions To Mineralogy and Petrology, 1984, 88, 72-85.	1.2	168
62	Amphiboles from suprasubduction and intraplate lithospheric mantle. Lithos, 2007, 99, 68-84.	0.6	157
63	Imaging global chemical and thermal heterogeneity in the subcontinental lithospheric mantle with garnets and xenoliths: Geophysical implications. Tectonophysics, 2006, 416, 289-309.	0.9	151
64	Geochronological, geochemical and isotopic study of detrital zircon suites from late Neoproterozoic clastic strata along the NE margin of the East European Craton: Implications for plate tectonic models. Gondwana Research, 2010, 17, 583-601.	3.0	147
65	Laser-ablation microprobe (LAM)-ICPMS unravels the highly siderophile element geochemistry of the oceanic mantle. Earth and Planetary Science Letters, 2001, 189, 285-294.	1.8	144
66	Mantle formation and evolution, Slave Craton: constraints from HSE abundances and Re–Os isotope systematics of sulfide inclusions in mantle xenocrysts. Chemical Geology, 2004, 208, 61-88.	1.4	143
67	Mantle metasomatism beneath western Victoria, Australia: II. Isotopic geochemistry of Cr-diopside Iherzolites and Al-augite pyroxenites. Geochimica Et Cosmochimica Acta, 1988, 52, 449-459.	1.6	138
68	Traceâ€element signatures of apatites in granitoids from the Mt Isa Inlier, northwestern Queensland. Australian Journal of Earth Sciences, 2001, 48, 603-619.	0.4	138
69	Mesoarchean subduction processes: 2.87 Ga eclogites from the Kola Peninsula, Russia. Geology, 2010, 38, 739-742.	2.0	137
70	Mantle Recycling: Transition Zone Metamorphism of Tibetan Ophiolitic Peridotites and its Tectonic Implications. Journal of Petrology, 2016, 57, 655-684.	1.1	137
71	Archaean and Proterozoic crustal evolution in the Eastern Succession of the Mt Isa district, Australia: U–ÂPb and Hf-isotope studies of detrital zircons *. Australian Journal of Earth Sciences, 2006, 53, 125-149.	0.4	135
72	Provenance of Lower Cretaceous Wölong Volcaniclastics in the Tibetan Tethyan Himalaya: Implications for the final breakup of Eastern Gondwana. Sedimentary Geology, 2010, 223, 193-205.	1.0	135

#	Article	IF	CITATIONS
73	Mantle Metasomatism. Lecture Notes in Earth System Sciences, 2013, , 471-533.	0.5	135
74	U–Pb and Lu–Hf isotopes in detrital zircon from Neoproterozoic sedimentary rocks in the northern Yangtze Block: Implications for Precambrian crustal evolution. Gondwana Research, 2013, 23, 1261-1272.	3.0	134
75	Multiple events in the Neo-Tethyan oceanic upper mantle: Evidence from Ru–Os–Ir alloys in the Luobusa and Dongqiao ophiolitic podiform chromitites, Tibet. Earth and Planetary Science Letters, 2007, 261, 33-48.	1.8	132
76	Mapping olivine composition in the lithospheric mantle. Earth and Planetary Science Letters, 2000, 182, 223-235.	1.8	129
77	Cratonic lithospheric mantle: Is anything subducted?. Episodes, 2007, 30, 43-53.	0.8	129
78	The continental lithosphere–asthenosphere boundary: Can we sample it?. Lithos, 2010, 120, 1-13.	0.6	125
79	Carbonate-bearing mantle peridotite xenoliths from Spitsbergen: phase relationships, mineral compositions and trace-element residence. Contributions To Mineralogy and Petrology, 1996, 125, 375-392.	1.2	124
80	Hydrous metasomatism of oceanic sub-arc mantle, Lihir, Papua New Guinea Part 2. Trace element characteristics of slab-derived fluids. Lithos, 2001, 59, 91-108.	0.6	124
81	3â€D multiobservable probabilistic inversion for the compositional and thermal structure of the lithosphere and upper mantle. I: <i>a priori</i> petrological information and geophysical observables. Journal of Geophysical Research: Solid Earth, 2013, 118, 2586-2617.	1.4	121
82	U–Pb and Hf-isotope analysis of zircons in mafic xenoliths from Fuxian kimberlites: evolution of the lower crust beneath the North China craton. Contributions To Mineralogy and Petrology, 2004, 148, 79-103.	1.2	120
83	Rejuvenation vs. recycling of Archean crust in the Gawler Craton, South Australia: Evidence from U–Pb and Hf isotopes in detrital zircon. Lithos, 2009, 113, 570-582.	0.6	119
84	Re–Os isotopes of sulfides in mantle xenoliths from eastern China: Progressive modification of lithospheric mantle. Lithos, 2008, 102, 43-64.	0.6	117
85	Diachronous decratonization of the Sino-Korean craton: Geochemistry of mantle xenoliths from North Korea. Geology, 2010, 38, 799-802.	2.0	117
86	A xenolith-derived geotherm and the crust-mantle boundary at Qilin, southeastern China. Lithos, 1996, 38, 41-62.	0.6	116
87	Cr-Pyrope Garnets in the Lithospheric Mantle. I. Compositional Systematics and Relations to Tectonic Setting. Journal of Petrology, 1999, 40, 679-704.	1.1	113
88	Transformation of Archaean Lithospheric Mantle by Refertilization: Evidence from Exposed Peridotites in the Western Gneiss Region, Norway. Journal of Petrology, 2006, 47, 1611-1636.	1.1	113
89	Melt/mantle mixing produces podiform chromite deposits in ophiolites: Implications of Re–Os systematics in the Dongqiao Neo-tethyan ophiolite, northern Tibet. Gondwana Research, 2012, 21, 194-206.	3.0	113
90	CO2- and LREE-rich mantle below eastern Australia: a REE and isotopic study of alkaline magmas and apatite-rich mantle xenoliths from the Southern Highlands Province, Australia. Earth and Planetary Science Letters, 1983, 65, 287-302.	1.8	112

#	Article	IF	CITATIONS
91	Relict Proterozoic basement in the Nanling Mountains (SE China) and its tectonothermal overprinting. Tectonics, 2005, 24, n/a-n/a.	1.3	111
92	Fractionation of oxygen and iron isotopes by partial melting processes: Implications for the interpretation of stable isotope signatures in mafic rocks. Earth and Planetary Science Letters, 2009, 283, 156-166.	1.8	110
93	4-D Lithosphere Mapping: methodology and examples. Tectonophysics, 1996, 262, 3-18.	0.9	109
94	In situ Re-Os analysis of sulfide inclusions in kimberlitic olivine: New constraints on depletion events in the Siberian lithospheric mantle. Geochemistry, Geophysics, Geosystems, 2002, 3, 1-25.	1.0	109
95	Diamond, subcalcic garnet, and mantle metasomatism: Kimberlite sampling patterns define the link. Geology, 2007, 35, 339.	2.0	109
96	Formation history and protolith characteristics of granulite facies metamorphic rock in Central Cathaysia deduced from U-Pb and Lu-Hf isotopic studies of single zircon grains. Science Bulletin, 2005, 50, 2080.	1.7	109
97	Two age populations of zircons from the Timber Creek kimberlites, Northern Territory, as determined by laser-ablation ICP-MS analysis. Australian Journal of Earth Sciences, 2001, 48, 757.	0.4	108
98	Finding of ancient materials in Cathaysia and implication for the formation of Precambrian crust. Science Bulletin, 2007, 52, 13-22.	1.7	108
99	Southward trench migration at â^¼130–120 Ma caused accretion of the Neo-Tethyan forearc lithosphere in Tibetan ophiolites. Earth and Planetary Science Letters, 2016, 438, 57-65.	1.8	108
100	Volatile-rich Metasomatism in Montferrier Xenoliths (Southern France): Implications for the Abundances of Chalcophile and Highly Siderophile Elements in the Subcontinental Mantle. Journal of Petrology, 2011, 52, 2009-2045.	1.1	107
101	Enrichment of upper mantle peridotite: petrological, trace element and isotopic evidence in xenoliths from SE China. Chemical Geology, 2003, 198, 163-188.	1.4	106
102	Linking continental deep subduction with destruction of a cratonic margin: strongly reworked North China SCLM intruded in the Triassic Sulu UHP belt. Contributions To Mineralogy and Petrology, 2014, 168, 1.	1.2	103
103	Ultradeep continental roots and their oceanic remnants: A solution to the geochemical "mantle reservoir―problem?. Lithos, 2009, 112, 1043-1054.	0.6	100
104	Geochemical characteristics of lava-field basalts from eastern Australia and inferred sources: Connections with the subcontinental lithospheric mantle?. Contributions To Mineralogy and Petrology, 1995, 121, 148-170.	1.2	99
105	Zircons in mantle xenoliths record the Triassic Yangtze–North China continental collision. Earth and Planetary Science Letters, 2006, 247, 130-142.	1.8	99
106	LAM-ICPMS U–Pb dating of kimberlitic perovskite: Eocene–Oligocene kimberlites from the Kundelungu Plateau, D.R. Congo. Earth and Planetary Science Letters, 2008, 267, 609-619.	1.8	99
107	Two age populations of zircons from the Timber Creek kimberlites, Northern Territory, as determined by laser-ablation ICP-MS analysis. Australian Journal of Earth Sciences, 2001, 48, 757-765.	0.4	98
108	Chromitites in ophiolites: How, where, when, why? Part I. A review and new ideas on the origin and significance of platinum-group minerals. Lithos, 2014, 189, 127-139.	0.6	98

#	Article	IF	CITATIONS
109	Ultrapotassic rocks and xenoliths from South Tibet: Contrasting styles of interaction between lithospheric mantle and asthenosphere during continental collision. Geology, 2017, 45, 51-54.	2.0	98
110	Primary sulphide melt inclusions in mantle-derived megacrysts and pyroxenites. Lithos, 1987, 20, 279-294.	0.6	97
111	Major and trace element, and Sr-Nd isotope constraints on the origin of Paleogene volcanism in South China prior to the South China Sea opening. Lithos, 1997, 40, 203-220.	0.6	97
112	Accretion and reworking beneath the North China Craton. Lithos, 2012, 149, 61-78.	0.6	97
113	Origins of Xenolithic Eclogites and Pyroxenites from the Central Slave Craton, Canada. Journal of Petrology, 2007, 48, 1843-1873.	1.1	96
114	The lower crust and upper mantle beneath northwestern Spitsbergen: evidence from xenoliths and geophysics. Tectonophysics, 1987, 139, 169-185.	0.9	95
115	Archean sulfide inclusions in Paleozoic zircon megacrysts from the Mir kimberlite, Yakutia: implications for the dating of diamonds. Earth and Planetary Science Letters, 2002, 199, 111-126.	1.8	95
116	Platinum-group elements and the multistage metasomatic history of Kerguelen lithospheric mantle (South Indian Ocean). Chemical Geology, 2004, 208, 195-215.	1.4	95
117	Screening criteria for reliable U–Pb geochronology and oxygen isotope analysis in uranium-rich zircons: A case study from the Suzhou A-type granites, SE China. Lithos, 2014, 192-195, 180-191.	0.6	95
118	Geochemistry and Origin of Sulphide Minerals in Mantle Xenoliths: Qilin, Southeastern China. Journal of Petrology, 1999, 40, 1125-1149.	1.1	94
119	Tibetan chromitites: Excavating the slab graveyard. Geology, 2015, 43, 179-182.	2.0	94
120	Granulite xenoliths from Cenozoic Basalts in SE China provide geochemical fingerprints to distinguish lower crust terranes from the North and South China tectonic blocks. Lithos, 2003, 67, 77-102.	0.6	92
121	Mineral inclusions and geochemical characteristics of microdiamonds from the DO27, A154, A21, A418, DO18, DD17 and Ranch Lake kimberlites at Lac de Gras, Slave Craton, Canadaâ~†. Lithos, 2004, 77, 39-55.	0.6	92
122	Armalcolite-bearing, Ti-rich metasomatic assemblages in harzburgitic xenoliths from the Kerguelen Islands: implications for the oceanic mantle budget of high-field strength elements. Geochimica Et Cosmochimica Acta, 2000, 64, 673-694.	1.6	91
123	A translithospheric suture in the vanished 1-Ga lithospheric root of South India: Evidence from contrasting lithosphere sections in the Dharwar Craton. Lithos, 2009, 112, 1109-1119.	0.6	91
124	Fingerprints of metamorphism in chromite: New insights from minor and trace elements. Chemical Geology, 2014, 389, 137-152.	1.4	90
125	Helium and strontium isotopes in ultramafic xenoliths. Chemical Geology, 1986, 54, 237-249.	1.4	84
126	The nature of the Cenozoic lithosphere at Nushan, eastern China. Geodynamic Series, 1998, , 167-195.	0.1	84

8

#	Article	IF	CITATIONS
127	Flood basalts and metallogeny: The lithospheric mantle connection. Earth-Science Reviews, 2008, 86, 145-174.	4.0	84
128	Plume-like neon in a metasomatic apatite from the Australian lithospheric mantle. Nature, 1997, 388, 162-164.	13.7	83
129	Nature and timing of metasomatism in the stratified mantle lithosphere beneath the central Slave craton (Canada). Chemical Geology, 2013, 352, 153-169.	1.4	81
130	Secular variation in the composition of subcontinental lithospheric mantle: Geophysical and geodynamic implications. Geodynamic Series, 1998, , 1-26.	0.1	81
131	Nature and evolution of Mesozoic–Cenozoic lithospheric mantle beneath the Cathaysia block, SE China. Lithos, 2004, 74, 41-65.	0.6	80
132	Recycled volatiles determine fertility of porphyry deposits in collisional settings. American Mineralogist, 2021, 106, 656-661.	0.9	80
133	Peridotite xenoliths in alkali basalts from the Sikhote-Alin, southeastern Siberia, Russia: trace-element signatures of mantle beneath a convergent continental margin. Chemical Geology, 1995, 120, 275-294.	1.4	79
134	Corundum from basaltic terrains: a mineral inclusion approach to the enigma. Contributions To Mineralogy and Petrology, 1996, 122, 368-386.	1.2	79
135	Nature of the lithospheric mantle beneath the eastern part of the Central Asian fold belt: mantle xenolith evidence. Tectonophysics, 2000, 328, 131-156.	0.9	79
136	Zircons in the Shenglikou ultrahigh-pressure garnet peridotite massif and its country rocks from the North Qaidam terrane (western China): Meso-Neoproterozoic crust–mantle coupling and early Paleozoic convergent plate-margin processes. Precambrian Research, 2011, 187, 33-57.	1.2	79
137	A refractory mantle protolith in younger continental crust, east-central China: Age and composition of zircon in the Sulu ultrahigh-pressure peridotite. Geology, 2006, 34, 705.	2.0	78
138	Zircon inclusions in corundum megacrysts: I. Trace element geochemistry and clues to the origin of corundum megacrysts in alkali basalts. Geochimica Et Cosmochimica Acta, 1996, 60, 2347-2363.	1.6	76
139	Highly evolved Archean basement beneath the western Cathaysia Block, South China. Geochimica Et Cosmochimica Acta, 2011, 75, 242-255.	1.6	76
140	Emplacement ages and sources of kimberlites and related rocks in southern Africa: U–Pb ages and Sr–Nd isotopes of groundmass perovskite. Contributions To Mineralogy and Petrology, 2014, 168, 1.	1.2	76
141	Minor elements in olivine from spinel lherzolite xenoliths: implications for thermobarometry. Mineralogical Magazine, 1997, 61, 257-269.	0.6	75
142	Noble gases in anhydrous lherzolites from the newer volcanics, southeastern Australia: a MORB-like reservoir in the subcontinental mantle. Geochimica Et Cosmochimica Acta, 1998, 62, 2521-2533.	1.6	75
143	Quantitative trace-element analysis of diamond by laser ablation inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 2005, 20, 601.	1.6	74
144	Resetting of the U–Pb Zircon System in Cambro-Ordovician Intrusives of the Deep Freeze Range, Northern Victoria Land, Antarctica. Journal of Petrology, 2007, 48, 327-364.	1.1	74

#	Article	IF	CITATIONS
145	Thermal state and composition of the lithospheric mantle beneath the Daldyn kimberlite field, Yakutia. Tectonophysics, 1996, 262, 19-33.	0.9	73
146	Noble gases in pyroxenites and metasomatised peridotites from the Newer Volcanics, southeastern Australia: implications for mantle metasomatism. Chemical Geology, 2000, 168, 49-73.	1.4	73
147	Origin and geological significance of Paleoproterozoic granites in the northeastern Cathaysia Block, South China. Precambrian Research, 2014, 248, 72-95.	1.2	73
148	High Field Strength Element Fractionation in the Upper Mantle: Evidence from Amphibole-Rich Composite Mantle Xenoliths from the Kerguelen Islands (Indian Ocean). Journal of Petrology, 2001, 42, 2145-2167.	1.1	72
149	Inclusions in diamonds from the K14 and K10 kimberlites, Buffalo Hills, Alberta, Canada: diamond growth in a plume?. Lithos, 2004, 77, 99-111.	0.6	72
150	Isotopic decoupling during porous melt flow: A case-study in the Lherz peridotite. Earth and Planetary Science Letters, 2009, 279, 76-85.	1.8	72
151	Subcontinental lithospheric mantle origin of high niobium/tantalum ratios inÂeclogites. Nature Geoscience, 2008, 1, 468-472.	5.4	71
152	Mantle amphibole trace-element and isotopic signatures trace multiple metasomatic episodes in lithospheric mantle, western Victoria, Australia. Lithos, 2004, 75, 141-171.	0.6	70
153	Dynamics of cratons in an evolving mantle. Lithos, 2008, 102, 12-24.	0.6	70
154	Heterogeneous and metasomatized mantle recorded by trace elements in minerals of the Donghai garnet peridotites, Sulu UHP terrane, China. Chemical Geology, 2005, 221, 243-259.	1.4	69
155	Plume-subduction interaction forms large auriferous provinces. Nature Communications, 2017, 8, 843.	5.8	69
156	Early Paleozoic tectonic reconstruction of Iran: Tales from detrital zircon geochronology. Lithos, 2017, 268-271, 87-101.	0.6	69
157	Continental collision and accretion recorded in the deep lithosphere of central China. Earth and Planetary Science Letters, 2008, 269, 497-507.	1.8	68
158	On the Vp/Vs–Mg# correlation in mantle peridotites: Implications for the identification of thermal and compositional anomalies in the upper mantle. Earth and Planetary Science Letters, 2010, 289, 606-618.	1.8	68
159	Moho vs crust–mantle boundary: Evolution of an idea. Tectonophysics, 2013, 609, 535-546.	0.9	68
160	Multiple sources for basaltic rocks from Dubbo, eastern Australia: geochemical evidence for plume—lithospheric mantle interaction. Chemical Geology, 1997, 136, 33-54.	1.4	67
161	Tectonic affinity of the west Qinling terrane (central China): North China or Yangtze?. Tectonics, 2010, 29, n/a-n/a.	1.3	66
162	Decoupling of U–Pb and Lu–Hf isotopes and trace elements in zircon from the UHP North Qaidam orogen, NE Tibet (China): Tracing the deep subduction of continental blocks. Lithos, 2012, 155, 125-145.	0.6	66

#	Article	IF	CITATIONS
163	Cenozoic lithospheric architecture and metallogenesis in Southeastern Tibet. Earth-Science Reviews, 2021, 214, 103472.	4.0	66
164	Feldspar-bearing lherzolite xenoliths in alkali basalts from Hamar-Daban, southern Baikal region, Russia. Contributions To Mineralogy and Petrology, 1995, 122, 174-190.	1.2	65
165	Trace-element partitioning between garnet and clinopyroxene in mantle-derived pyroxenites and eclogites: P-T-X controls. Chemical Geology, 1995, 121, 105-130.	1.4	65
166	The isotopic composition of magnesium in mantle olivine: Records of depletion and metasomatism. Chemical Geology, 2006, 226, 115-133.	1.4	65
167	Cu isotopes reveal initial Cu enrichment in sources of giant porphyry deposits in a collisional setting. Geology, 2019, 47, 135-138.	2.0	65
168	Cr-pyrope garnets in the lithospheric mantle 2. Compositional populations and their distribution in time and space. Geochemistry, Geophysics, Geosystems, 2002, 3, 1-35.	1.0	64
169	Carbonatite melt in oceanic upper mantle beneath the Kerguelen Archipelago. Lithos, 2004, 75, 239-252.	0.6	64
170	Type I eclogites from Roberts Victor kimberlites: Products of extensive mantle metasomatism. Geochimica Et Cosmochimica Acta, 2011, 75, 6927-6954.	1.6	64
171	Genesis and tectonic implications of podiform chromitites in the metamorphosed ultramafic massif of Dobromirtsi (Bulgaria). Gondwana Research, 2015, 27, 555-574.	3.0	64
172	Ghosts of lithospheres past: Imaging an evolving lithospheric mantle in southern Africa. Geology, 2008, 36, 515.	2.0	63
173	Age and composition of granulite and pyroxenite xenoliths in Hannuoba basalts reflect Paleogene underplating beneath the North China Craton. Chemical Geology, 2009, 264, 266-280.	1.4	63
174	Hf isotopes of MARID (mica-amphibole-rutile-ilmenite-diopside) rutile trace metasomatic processes in the lithospheric mantle. Geology, 2005, 33, 45.	2.0	62
175	Crustal Evolution of NW Iran: Cadomian Arcs, Archean Fragments and the Cenozoic Magmatic Flare-Up. Journal of Petrology, 2017, 58, 2143-2190.	1.1	62
176	Scandium speciation in a world-class lateritic deposit. Geochemical Perspectives Letters, 2017, , 105-114.	1.0	62
177	Subduction signature for quenched carbonatites from the deep lithosphere. Geology, 2002, 30, 743.	2.0	61
178	The Evolution of the Upper Mantle beneath the Canary Islands: Information from Trace Elements and Sr isotope Ratios in Minerals in Mantle Xenoliths. Journal of Petrology, 2004, 45, 2573-2612.	1.1	61
179	Neoarchean (2.7–2.8ÂGa) accretion beneath the North China Craton: U–Pb age, trace elements and Hf isotopes of zircons in diamondiferous kimberlites. Lithos, 2009, 112, 188-202.	0.6	61
180	H2O contents and their modification in the Cenozoic subcontinental lithospheric mantle beneath the Cathaysia block, SE China. Lithos, 2011, 126, 182-197.	0.6	61

#	Article	IF	CITATIONS
181	The enigma of crustal zircons in upper-mantle rocks: Clues from the Tumut ophiolite, southeast Australia. Geology, 2015, 43, 119-122.	2.0	60
182	A primitive alkali basaltic stratovolcano and associated eruptive centres, Northwestern Spitsbergen: Volcanology and tectonic significance. Journal of Volcanology and Geothermal Research, 1989, 37, 1-19.	0.8	59
183	Origin of volcanic ash beds across the Permian–Triassic boundary, Daxiakou, South China: Petrology and U–Pb age, trace elements and Hf-isotope composition of zircon. Chemical Geology, 2013, 360-361, 41-53.	1.4	59
184	Genesis and evolution of the lithospheric mantle beneath the Buffalo Head Terrane, Alberta (Canada)â~†. Lithos, 2004, 77, 413-451.	0.6	58
185	Thallium isotopes in Iceland and Azores lavas — Implications for the role of altered crust and mantle geochemistry. Earth and Planetary Science Letters, 2007, 264, 332-345.	1.8	58
186	μ-FTIR mapping: Distribution of impurities in different types of diamond growth. Diamond and Related Materials, 2012, 29, 29-36.	1.8	58
187	Single zircon LAM-ICPMS U-Pb dating of Guidong complex (SE China) and its petrogenetic significance. Science Bulletin, 2003, 48, 1892-1899.	1.7	57
188	The Kharamai kimberlite field, Siberia: modification of the lithospheric mantle by the Siberian Trap event. Lithos, 2005, 81, 167-187.	0.6	57
189	Thermal and compositional structure of the subcontinental lithospheric mantle: Derivation from shear wave seismic tomography. Geochemistry, Geophysics, Geosystems, 2006, 7, n/a-n/a.	1.0	57
190	Melt inclusions from the deep Slave lithosphere: implications for the origin and evolution of mantle-derived carbonatite and kimberlite. Lithos, 2004, 76, 461-474.	0.6	56
191	Buoyant ancient continental mantle embedded in oceanic lithosphere (Sal Island, Cape Verde) Tj ETQq1 1 0.784	814 rgBT /	Overlock 10
192	Xenolith geotherms and crustal models in Eastern Australia. Tectonophysics, 1991, 192, 359-366.	0.9	52
193	Taking the pulse of the Earth: linking crustal and mantle events. Australian Journal of Earth Sciences, 2008, 55, 983-995.	0.4	52
194	Sulfides in mantle peridotites from Penghu Islands, Taiwan: Melt percolation, PGE fractionation, and the lithospheric evolution of the South China block. Geochimica Et Cosmochimica Acta, 2009, 73, 4531-4557.	1.6	52
195	In-situ geochemistry of sulfides in highly metasomatized mantle xenoliths from Kerguelen, southern Indian Ocean. Lithos, 2012, 154, 296-314.	0.6	52
196	First terrestrial occurrence of tistarite (Ti ₂ O ₃): Ultra-low oxygen fugacity in the upper mantle beneath Mount Carmel, Israel. Geology, 2016, 44, 815-818.	2.0	52
197	U-Pb dating of zircons from quartz diorite and its enclaves at Tongguanshan in Anhui and its petrogenetic implication. Science Bulletin, 2004, 49, 2073.	1.7	51
198	Late Mesozoic-Eocene Mantle Replacement beneath the Eastern North China Craton: Evidence from the Paleozoic and Cenozoic Peridotite Xenoliths. International Geology Review, 2005, 47, 457-472.	1.1	51

#	Article	IF	CITATIONS
199	Lithosphere formation in the central Slave Craton (Canada): plume subcretion or lithosphere accretion?. Contributions To Mineralogy and Petrology, 2007, 154, 409-427.	1.2	51
200	In situ Re–Os isotopic analysis of platinum-group minerals from the MayarÃ-Cristal ophiolitic massif (MayarÃ-Baracoa Ophiolitic Belt, eastern Cuba): implications for the origin of Os-isotope heterogeneities in podiform chromitites. Contributions To Mineralogy and Petrology, 2011, 161, 977-990.	1.2	51
201	Alkaline magmatism from Kutch, NW India: implications for plume–lithosphere interaction. Lithos, 2005, 81, 101-119.	0.6	50
202	Crustal evolution in the central Congo-Kasai Craton, Luebo, D.R. Congo: Insights from zircon U–Pb ages, Hf-isotope and trace-element data. Precambrian Research, 2009, 170, 107-115.	1.2	50
203	Diamonds in ophiolites: Contamination or a new diamond growth environment?. Earth and Planetary Science Letters, 2015, 430, 284-295.	1.8	50
204	Thermal state of the lithosphere beneath Central Mongolia: evidence from deep-seated xenoliths from the Shavaryn-Saram volcanic centre in the Tariat depression, Hangai, Mongolia. Lithos, 1995, 36, 243-255.	0.6	49
205	Archean mantle fragments in Proterozoic crust, Western Gneiss Region, Norway. Geology, 2004, 32, 609.	2.0	48
206	Trace-element patterns of fibrous and monocrystalline diamonds: Insights into mantle fluids. Lithos, 2010, 118, 313-337.	0.6	48
207	Multi-stage origin of Roberts Victor eclogites: Progressive metasomatism and its isotopic effects. Lithos, 2012, 142-143, 161-181.	0.6	48
208	Pyroxenite Dykes in Orogenic Peridotite from North Qaidam (NE Tibet, China) Track Metasomatism and Segregation in the Mantle Wedge. Journal of Petrology, 2014, 55, 2347-2376.	1.1	48
209	Metasomatism and sulfide mobility in lithospheric mantle beneath eastern Australia: Implications for mantle Re–Os chronology. Lithos, 2007, 94, 132-147.	0.6	47
210	Roll-Back, Extension and Mantle Upwelling Triggered Eocene Potassic Magmatism in NW Iran. Journal of Petrology, 2018, 59, 1417-1465.	1.1	47
211	Grenvillian orogeny in the Southern Cathaysia Block: Constraints from U-Pb ages and Lu-Hf isotopes in zircon from metamorphic basement. Science Bulletin, 2008, 53, 3037-3050.	4.3	46
212	Petrogenesis and geochronology of Cretaceous adakitic, I- and A-type granitoids in the NE Yangtze block: Constraints on the eastern subsurface boundary between the North and South China blocks. Lithos, 2013, 175-176, 333-350.	0.6	46
213	Primitive Arc Magmatism and Delamination: Petrology and Geochemistry of Pyroxenites from the Cabo Ortegal Complex, Spain. Journal of Petrology, 2016, 57, 1921-1954.	1.1	46
214	Mud Tank Zircon: Longâ€Term Evaluation of a Reference Material for Uâ€Pb Dating, Hfâ€Isotope Analysis and Trace Element Analysis. Geostandards and Geoanalytical Research, 2019, 43, 339-354.	1.7	46
215	Proterozoic mantle lithosphere beneath the extended margin of the South China block: In situ Re-Os evidence. Geology, 2003, 31, 709.	2.0	45
216	Super-reduced mineral assemblages in "ophiolitic" chromitites and peridotites: the view from Mount Carmel. European Journal of Mineralogy, 2017, 29, 557-570.	0.4	45

#	Article	IF	CITATIONS
217	Super-reducing conditions in ancient and modern volcanic systems: sources and behaviour of carbon-rich fluids in the lithospheric mantle. Mineralogy and Petrology, 2018, 112, 101-114.	0.4	45
218	High- and low-Cr chromitite and dunite in a Tibetan ophiolite: evolution from mature subduction system to incipient forearc in the Neo-Tethyan Ocean. Contributions To Mineralogy and Petrology, 2017, 172, 1.	1.2	44
219	Cretaceous thermo-chemical modification of the Kaapvaal cratonic lithosphere, South Africa. Lithos, 2009, 112, 886-895.	0.6	43
220	Messengers from the deep: Fossil wadsleyite-chromite microstructures from the Mantle Transition Zone. Scientific Reports, 2015, 5, 16484.	1.6	43
221	A geotherm and lithospheric section for central Mongolia (Tariat region). Geodynamic Series, 1998, , 127-153.	0.1	42
222	Ultramafic Xenoliths from Kutch, Northwest India: Plume-Related Mantle Samples?. International Geology Review, 2000, 42, 416-444.	1.1	42
223	The crust-mantle boundary beneath cratons and craton margins: a transect across the south-west margin of the Kaapvaal craton. Lithos, 1995, 36, 257-287.	0.6	41
224	Crustal evolution in the Georgetown Inlier, North Queensland, Australia: a detrital zircon grain study. Chemical Geology, 2007, 245, 198-218.	1.4	41
225	Gold in the mantle: A global assessment of abundance and redistribution processes. Lithos, 2018, 322, 376-391.	0.6	41
226	Dating lower crust and upper mantle events: an ion microprobe study of xenoliths from kimberlitic pipes, South Australia. Lithos, 1994, 32, 77-94.	0.6	40
227	Apatite halogens and Sr-O and zircon Hf-O isotopes: Recycled volatiles in Jurassic porphyry ore systems in southern Tibet. Chemical Geology, 2022, 605, 120924.	1.4	40
228	The thermal state and composition of the lithospheric mantle beneath the Leizhou Peninsula, South China. Journal of Volcanology and Geothermal Research, 2003, 122, 165-189.	0.8	39
229	Granulite xenoliths and their zircons, Tuoyun, NW China: Insights into southwestern Tianshan lower crust. Precambrian Research, 2006, 145, 159-181.	1.2	39
230	Os-isotope variability within sulfides from podiform chromitites. Chemical Geology, 2012, 291, 224-235.	1.4	39
231	Recycling of ancient subduction-modified mantle domains in the Purang ophiolite (southwestern) Tj ETQq1 1 0.7	'84314 rgl 0.6	3T /Overlock
232	Roles of Melting and Metasomatism in the Formation of the Lithospheric Mantle beneath the Leizhou Peninsula, South China. Journal of Petrology, 2006, 47, 355-383.	1.1	38
233	Sr isotopic heterogeneity in primitive basaltic rocks, southeastern Australia: correlation with mantle metasomatism. Contributions To Mineralogy and Petrology, 1984, 87, 220-230.	1.2	37
234	Persistence of mantle lithospheric Re–Os signature during asthenospherization of the subcontinental lithospheric mantle: insights from in situ isotopic analysis of sulfides from the Ronda peridotite (Southern Spain). Contributions To Mineralogy and Petrology, 2010, 159, 315-330.	1.2	37

#	Article	IF	CITATIONS
235	Origin and evolution of topaz-bearing granites from the Nanling Range, South China: a geochemical and Sr–Nd–Hf isotopic study. Mineralogy and Petrology, 2007, 90, 271-300.	0.4	36
236	Spatial and temporal evolution of Liassic to Paleocene arc activity in southern Peru unraveled by zircon U–Pb and Hf in-situ data on plutonic rocks. Lithos, 2012, 155, 183-200.	0.6	36
237	A spectroscopic and carbon-isotope study of mixed-habit diamonds: Impurity characteristics and growth environment. American Mineralogist, 2013, 98, 66-77.	0.9	36
238	Diamonds from Wellington, NSW: insights into the origin of eastern Australian diamonds. Mineralogical Magazine, 1999, 63, 447-471.	0.6	35
239	Feldspar from carbonate-rich silicate metasomatism in the shallow oceanic mantle under Kerguelen Islands (South Indian Ocean). Lithos, 2004, 75, 209-237.	0.6	35
240	Platelet development in cuboid diamonds: insights from micro-FTIR mapping. Contributions To Mineralogy and Petrology, 2012, 164, 1011-1025.	1.2	35
241	Coupling, decoupling and metasomatism: Evolution of crust–mantle relationships beneath NW Spitsbergen. Lithos, 2012, 149, 115-135.	0.6	35
242	Twoâ€layered oceanic lithospheric mantle in a <scp>T</scp> ibetan ophiolite produced by episodic subduction of <scp>T</scp> ethyan slabs. Geochemistry, Geophysics, Geosystems, 2017, 18, 1189-1213.	1.0	35
243	Measured and calculated elastic wave velocities for xenoliths from the lower crust and upper mantle. Tectonophysics, 1990, 173, 207-210.	0.9	34
244	Petrogenesis of the Yangkou layered garnet-peridotite complex, Sulu UHP terrane, China. American Mineralogist, 2005, 90, 801-813.	0.9	34
245	The Kimberlites and related rocks of the Kuruman Kimberlite Province, Kaapvaal Craton, South Africa. Contributions To Mineralogy and Petrology, 2011, 161, 351-371.	1.2	34
246	In situ U–Pb Dating and Sr–Nd Isotopic Analysis of Perovskite: Constraints on the Age and Petrogenesis of the Kuruman Kimberlite Province, Kaapvaal Craton, South Africa. Journal of Petrology, 2012, 53, 2497-2522.	1.1	34
247	Metamorphism disturbs the Re-Os signatures of platinum-group minerals in ophiolite chromitites. Geology, 2012, 40, 659-662.	2.0	34
248	The architecture of the European-Mediterranean lithosphere: A synthesis of the Re-Os evidence. Geology, 2013, 41, 547-550.	2.0	34
249	Trace-element geochemistry and U–Pb dating of perovskite in kimberlites of the Lunda Norte province (NE Angola): Petrogenetic and tectonic implications. Chemical Geology, 2016, 426, 118-134.	1.4	34
250	Australian laterites reveal mechanisms governing scandium dynamics in the critical zone. Geochimica Et Cosmochimica Acta, 2019, 260, 292-310.	1.6	34
251	Morphology and geochemistry of zircons from late Mesozoic igneous complexes in coastal SE China: implications for petrogenesis. Mineralogical Magazine, 2002, 66, 235-251.	0.6	33
252	Cretaceous volcanic-intrusive magmatism in western Guangdong and its geological significance. Science in China Series D: Earth Sciences, 2006, 49, 696-713.	0.9	33

#	Article	IF	CITATIONS
253	Mantle melts, metasomatism and diamond formation: Insights from melt inclusions in xenoliths from Diavik, Slave Craton. Lithos, 2009, 112, 675-682.	0.6	33
254	Zircon U-Pb and Hf isotopes of volcanic rocks from the Batamayineishan Formation in the eastern Junggar Basin. Science Bulletin, 2010, 55, 4150-4161.	1.7	33
255	Episodic refertilization and metasomatism of Archean mantle: evidence from an orogenic peridotite in North Qaidam (NE Tibet, China). Contributions To Mineralogy and Petrology, 2015, 169, 1.	1.2	33
256	Subduction, highâ€P metamorphism, and collision fingerprints in South Iran: Constraints from zircon Uâ€Pb and mica Rbâ€ S r geochronology. Geochemistry, Geophysics, Geosystems, 2017, 18, 306-332.	1.0	33
257	Neoproterozoic sedimentary rocks track the location of the Lhasa Block during the Rodinia breakup. Precambrian Research, 2019, 320, 63-77.	1.2	33
258	Distribution of high field strength and rare earth elements in mantle and lower crustal xenoliths from the Southwestern United States: The role of grain-boundary phases. Geochimica Et Cosmochimica Acta, 2004, 68, 3919-3942.	1.6	32
259	U–Pb and Hf-isotope analyses of zircon from the Kundelungu Kimberlites, D.R. Congo: Implications for crustal evolution. Precambrian Research, 2007, 156, 195-225.	1.2	32
260	A terrestrial magmatic hibonite-grossite-vanadium assemblage: Desilication and extreme reduction in a volcanic plumbing system, Mount Carmel, Israel. American Mineralogist, 2019, 104, 207-219.	0.9	32
261	Repeated magmatic buildup and deep "hot zones―in continental evolution: The Cadomian crust of Iran. Earth and Planetary Science Letters, 2020, 531, 115989.	1.8	32
262	The granulite to eclogite transition beneath the eastern margin of the Australian craton. European Journal of Mineralogy, 1991, 3, 293-322.	0.4	32
263	The lower crust in eastern Australia: xenolith evidence. Geological Society Special Publication, 1986, 24, 363-374.	0.8	31
264	The lithospheric mantle beneath the southwestern Tianshan area, northwest China. Contributions To Mineralogy and Petrology, 2006, 151, 457-479.	1.2	31
265	Microinclusions in monocrystalline octahedral diamonds and coated diamonds from Diavik, Slave Craton: Clues to diamond genesis. Lithos, 2009, 112, 724-735.	0.6	31
266	Evolution of the Lüliangshan garnet peridotites in the North Qaidam UHP belt, Northern Tibetan Plateau: Constraints from Re–Os isotopes. Lithos, 2010, 117, 307-321.	0.6	31
267	Archean lithospheric mantle beneath Arkansas: Continental growth by microcontinent accretion. Bulletin of the Geological Society of America, 2011, 123, 1763-1775.	1.6	31
268	Crustal zircons and mantle sulfides: Archean to Triassic events in the lithosphere beneath south-eastern Sicily. Lithos, 2007, 96, 503-523.	0.6	30
269	Constraints from eclogite and MARID xenoliths on origins of mantle Zr/Hf–Nb/Ta variability. Contributions To Mineralogy and Petrology, 2011, 162, 1047-1062.	1.2	30
270	Significance of ancient sulfide PGE and Re–Os signatures in the mantle beneath Calatrava, Central Spain. Contributions To Mineralogy and Petrology, 2014, 168, 1.	1.2	30

#	Article	IF	CITATIONS
271	Fluid-present deformation aids chemical modification of chromite: Insights from chromites from Golyamo Kamenyane, SE Bulgaria. Lithos, 2015, 228-229, 78-89.	0.6	30
272	Subduction-related middle Permian to early Triassic magmatism in central Hainan Island, South China. Lithos, 2018, 318-319, 158-175.	0.6	30
273	Trace-element geochemistry of diamondite: Crystallisation of diamond from kimberlite–carbonatite melts. Lithos, 2008, 106, 39-54.	0.6	29
274	Trace element partitioning in mixed-habit diamonds. Chemical Geology, 2013, 355, 134-143.	1.4	29
275	Pressure―and stressâ€induced fabric transition in olivine from peridotites in the Western Gneiss Region (Norway): implications for mantle seismic anisotropy. Journal of Metamorphic Geology, 2013, 31, 93-111.	1.6	29
276	Transfer of Os isotopic signatures from peridotite to chromitite in the subcontinental mantle: Insights from in situ analysis of platinum-group and base-metal minerals (Ojén peridotite massif,) Tj ETQq0 0 C)rgBato/Ov	erlæsk 10 Tf 5
277	Lithospheric mantle structure and the diamond potential of kimberlites in southern D.R. Congo. Lithos, 2009, 112, 166-176.	0.6	28
278	The first results of U/Pb dating and isotope geochemical studies of detrital zircons from the neoproterozoic sandstones of the Southern Timan (Djejim-Parma Hill). Doklady Earth Sciences, 2010, 435, 1676-1683.	0.2	28
279	The role of eclogite in the rift-related metasomatism and Cenozoic magmatism of Northern Victoria Land, Antarctica. Lithos, 2011, 124, 319-330.	0.6	28
280	Thermal metamorphism of mantle chromites and the stability of noble-metal nanoparticles. Contributions To Mineralogy and Petrology, 2015, 170, 1.	1.2	28
281	Trace-element fingerprints of chromite, magnetite and sulfides from the 3.1ÂGa ultramafic–mafic rocks of the Nuggihalli greenstone belt, Western Dharwar craton (India). Contributions To Mineralogy and Petrology, 2015, 169, 1.	1.2	28
282	Tectonothermal evolution of the continental crust beneath the Yakutian diamondiferous province (Siberian craton): U–Pb and Hf isotopic evidence on zircons from crustal xenoliths of kimberlite pipes. Precambrian Research, 2016, 282, 1-20.	1.2	28
283	The recycling of chromitites in ophiolites from southwestern North America. Lithos, 2017, 294-295, 53-72.	0.6	28
284	Basement components of the Xiangshan-Yuhuashan area, South China: Defining the boundary between the Yangtze and Cathaysia blocks. Precambrian Research, 2018, 309, 102-122.	1.2	28
285	Unusual mineral inclusions and carbon isotopes of alluvial diamonds from Bingara, eastern Australia. Lithos, 2003, 69, 51-66.	0.6	27
286	Laurentian Provenance of Archean Mantle Fragments in the Proterozoic Baltic Crust of the Norwegian Caledonides. Journal of Petrology, 2012, 53, 1357-1383.	1.1	27
287	Ages, trace elements and Hf-isotopic compositions of zircons from claystones around the Permian-Triassic boundary in the Zunyi Section, South China: Implications for nature and tectonic setting of the volcanism. Journal of Earth Science (Wuhan, China), 2015, 26, 872-882.	1.1	27
288	Cr-rich rutile: A powerful tool for diamond exploration. Lithos, 2016, 265, 304-311.	0.6	27

#	Article	IF	CITATIONS
289	Equilibration temperatures and elastic wave velocities for upper mantle rocks from eastern Australia: implications for the interpretation of seismological models. Tectonophysics, 1990, 185, 67-82.	0.9	26
290	Compositional effects on the solubility of minor and trace elements in oxide spinel minerals: Insights from crystal-crystal partition coefficients in chromite exsolution. American Mineralogist, 2016, 101, 1360-1372.	0.9	26
291	Zircon recycling and crystallization during formation of chromite- and Ni-arsenide ores in the subcontinental lithospheric mantle (SerranÃa de Ronda, Spain). Ore Geology Reviews, 2017, 90, 193-209.	1.1	26
292	Paleoproterozoic basement beneath the southern Jiangxi Province: Evidence from U-Pb ages and Lu-Hf isotopes in zircons from the Doushui lamprophyre. Science Bulletin, 2009, 54, 1555-1563.	4.3	25
293	The Belomorian eclogite province: Unique evidence of Meso-Neoarchaean subduction and collision. Doklady Earth Sciences, 2010, 434, 1311-1316.	0.2	25
294	Sources and timing of pyroxenite formation in the sub-arc mantle: Case study of the Cabo Ortegal Complex, Spain. Earth and Planetary Science Letters, 2017, 474, 490-502.	1.8	25
295	Component variation in the late Neoproterozoic to Cambrian sedimentary rocks of SW China – NE Vietnam, and its tectonic significance. Precambrian Research, 2018, 308, 92-110.	1.2	25
296	Carmeltazite, ZrAl2Ti4O11, a New Mineral Trapped in Corundum from Volcanic Rocks of Mt Carmel, Northern Israel. Minerals (Basel, Switzerland), 2018, 8, 601.	0.8	25
297	Mantle-derived sapphirine. Mineralogical Magazine, 1986, 50, 635-640.	0.6	25
298	Evolution of Phanerozoic Eastern Australian Lithosphere: Isotopic Evidence for Magmatic and Tectonic Underplating. Journal of Petrology, 1988, Special_Volume, 89-108.	1.1	24
299	Location of Pacific and Indian mid-ocean ridge–type mantle in two time slices: Evidence from Pb, Sr, and Nd isotopes for Cenozoic Australian basalts. Geology, 1999, 27, 39.	2.0	24
300	Deformation of mantle pyroxenites provides clues to geodynamic processes in subduction zones: Case study of the Cabo Ortegal Complex, Spain. Earth and Planetary Science Letters, 2017, 472, 174-185.	1.8	24
301	Multi-stage modification of Paleoarchean crust beneath the Anabar tectonic province (Siberian) Tj ETQq1 1 0.784	4314 rgBT 1.2	/Overlock 10 24
302	Multiple Metasomatism beneath the NógrÃįd–Gömör Volcanic Field (Northern Pannonian Basin) Revealed by Upper Mantle Peridotite Xenoliths. Journal of Petrology, 2017, 58, 1107-1144.	1.1	23
303	Cold plumes trigger contamination of oceanic mantle wedges with continental crust-derived sediments: Evidence from chromitite zircon grains of eastern Cuban ophiolites. Geoscience Frontiers, 2018, 9, 1921-1936.	4.3	23
304	Late Cretaceous subduction-related magmatism on the southern edge of Sabzevar basin, NE Iran. Journal of the Geological Society, 2019, 176, 530-552.	0.9	23
305	Moho and petrologic crust-mantle boundary coincide under southeastern Australia: Comment and Reply. Geology, 1994, 22, 666.	2.0	22
306	Sulfides and chalcophile elements in Roberts Victor eclogites: Unravelling a sulfide-rich metasomatic event. Chemical Geology, 2013, 354, 73-92.	1.4	22

#	Article	IF	CITATIONS
307	Unmasking xenolithic eclogites: Progressive metasomatism of a key Roberts Victor sample. Chemical Geology, 2014, 364, 56-65.	1.4	22
308	Recurrent magmatic activity on a lithosphere-scale structure: Crystallization and deformation in kimberlitic zircons. Gondwana Research, 2017, 42, 126-132.	3.0	22
309	Magma sources and gold mineralisation in the Mount Leyshon and Tuckers Igneous Complexes, Queensland, Australia: U-Pb and Hf isotope evidence. Lithos, 2008, 101, 281-307.	0.6	21
310	Sulfide metasomatism and the mobility of gold in the lithospheric mantle. Chemical Geology, 2015, 410, 149-161.	1.4	21
311	Tectonic Switching of Southeast China in the Late Paleozoic. Journal of Geophysical Research: Solid Earth, 2018, 123, 8508-8526.	1.4	21
312	Langshan basalts record recycled Paleo-Asian oceanic materials beneath the northwest North China Craton. Chemical Geology, 2019, 524, 88-103.	1.4	21
313	Thermobarometry and P?T?t paths: the granulite to eclogite transition in lower crustal xenoliths from eastern Australia. Journal of Metamorphic Geology, 1991, 9, 349-359.	1.6	20
314	Multiple Origins of Alluvial Diamonds from New South Wales, Australia. Economic Geology, 2002, 97, 109-123.	1.8	20
315	Extreme lithium isotopic fractionation in three zircon standards (Plešovice, Qinghu and Temora). Scientific Reports, 2015, 5, 16878.	1.6	20
316	Sources of the Nanwenhe - Song Chay granitic complex (SW China - NE Vietnam) and its tectonic significance. Lithos, 2017, 290-291, 76-93.	0.6	20
317	Extremely low structural hydroxyl contents in upper mantle xenoliths from the Nógrád-Gömör Volcanic Field (northern Pannonian Basin): Geodynamic implications and the role of post-eruptive re-equilibration. Chemical Geology, 2019, 507, 23-41.	1.4	20
318	Subduction initiation and back-arc opening north of Neo-Tethys: Evidence from the Late Cretaceous Torbat-e-Heydarieh ophiolite of NE Iran. Bulletin of the Geological Society of America, 2020, 132, 1083-1105.	1.6	20
319	Oxides of low pressure origin from alkali basaltic rocks, southern highlands, N.S.W., and their bearing on the petrogenesis of alkali basaltic magmas. Journal of the Geological Society of Australia, 1973, 20, 427-447.	0.6	19
320	Lithospheric domains and controls on kimberlite emplacement, Slave Province, Canada: Evidence from elastic thickness and upper mantle composition. Geochemistry, Geophysics, Geosystems, 2005, 6, n/a-n/a.	1.0	19
321	Thallium isotopes as a potential tracer for the origin of cratonic eclogites. Geochimica Et Cosmochimica Acta, 2009, 73, 7387-7398.	1.6	19
322	Water contents of Roberts Victor xenolithic eclogites: primary and metasomatic controls. Contributions To Mineralogy and Petrology, 2014, 168, 1.	1.2	19
323	Microscale effects of melt infiltration into the lithospheric mantle: Peridotite xenoliths from Xilong, South China. Lithos, 2015, 232, 111-123.	0.6	19
324	Sulfide in dunite channels reflects long-distance reactive migration of mid-ocean-ridge melts from mantle source to crust: A Re-Os isotopic perspective. Earth and Planetary Science Letters, 2020, 531, 115969.	1.8	19

#	Article	IF	CITATIONS
325	Combined U-Pb dating and Sm-Nd studies on lower crustal and mantle xenoliths from the Delegate basaltic pipes, southeastern Australia. Contributions To Mineralogy and Petrology, 1998, 130, 154-161.	1.2	18
326	Chapter 8.2 The Earliest Subcontinental Lithospheric Mantle. Neoproterozoic-Cambrian Tectonics, Global Change and Evolution: A Focus on South Western Gondwana, 2007, 15, 1013-1035.	0.2	18
327	Magnesium and oxygen isotopes in Roberts Victor eclogites. Chemical Geology, 2016, 438, 73-83.	1.4	18
328	Use and misuse of Mg- and Mn-rich ilmenite in diamond exploration: A petrographic and trace element approach. Lithos, 2017, 292-293, 348-363.	0.6	18
329	Unexposed Archean components and complex post-Archean accretion/reworking processes beneath the southern Yangtze Block revealed by zircon xenocrysts from the Paleozoic lamproites, South China. Precambrian Research, 2018, 316, 174-196.	1.2	18
330	Late Paleozoic magmatism in South China: Oceanic subduction or intracontinental orogeny?. Science Bulletin, 2013, 58, 788-795.	1.7	17
331	Nitrogen nanoinclusions in milky diamonds from Juina area, Mato Grosso State, Brazil. Lithos, 2016, 265, 57-67.	0.6	17
332	Widespread Paleoproterozoic basement in the eastern Cathaysia Block: Evidence from metasedimentary rocks of the Pingtan–Dongshan metamorphic belt, in southeastern China. Precambrian Research, 2016, 285, 91-108.	1.2	17
333	Tracing ancient events in the lithospheric mantle: A case study from ophiolitic chromitites of SW Turkey. Journal of Asian Earth Sciences, 2016, 119, 1-19.	1.0	17
334	Laurite and zircon from the Finero chromitites (Italy): New insights into evolution of the subcontinental mantle. Ore Geology Reviews, 2017, 90, 210-225.	1.1	17
335	Characterisation of primary and secondary carbonates in hypabyssal kimberlites: an integrated compositional and Sr-isotopic approach. Mineralogy and Petrology, 2018, 112, 555-567.	0.4	17
336	Permian to quaternary magmatism beneath the Mt Carmel area, Israel: Zircons from volcanic rocks and associated alluvial deposits. Lithos, 2018, 314-315, 307-322.	0.6	17
337	Extreme reduction: Mantle-derived oxide xenoliths from a hydrogen-rich environment. Lithos, 2020, 358-359, 105404.	0.6	17
338	The Salma Eclogites of the Belomorian Province, Russia. , 2011, , 623-670.		16
339	Microcontinents among the accretionary complexes of the Central Asia Orogenic Belt: In situ Re–Os evidence. Journal of Asian Earth Sciences, 2013, 62, 37-50.	1.0	16
340	Complex evolution of the lower crust beneath the southeastern North China Craton: the Junan xenoliths and xenocrysts. Lithos, 2014, 206-207, 113-126.	0.6	16
341	Inclusions of crichtonite-group minerals in Cr-pyropes from the Internatsionalnaya kimberlite pipe, Siberian Craton: Crystal chemistry, parageneses and relationships to mantle metasomatism. Lithos, 2018, 308-309, 181-195.	0.6	16
342	Insights into the mantle geochemistry of scandium from a meta-analysis of garnet data. Lithos, 2018, 310-311, 409-421.	0.6	16

#	Article	IF	CITATIONS
343	Tracking Deep Lithospheric Events with Garnet-Websterite Xenoliths from Southeastern Australia. Journal of Petrology, 2018, 59, 901-930.	1.1	16
344	Ba partitioning and the origin of anorthoclase megacrysts in basalitic rocks. Mineralogical Magazine, 1992, 56, 101-107.	0.6	15
345	Characterization of the metasomatic agent in mantle xenoliths from Devès, Massif Central (France) using coupled in situ trace-element and O, Sr and Nd isotopic compositions. Geological Society Special Publication, 2008, 293, 177-196.	0.8	15
346	Two stages of zircon crystallization in the Jingshan monzogranite, Bengbu Uplift: Implications for the syn-collisional granites of the Dabie–Sulu UHP orogenic belt and the climax of movement on the Tan-Lu fault. Lithos, 2011, 122, 201-213.	0.6	15
347	Pre-Mesozoic Crimea as a continuation of the Dobrogea platform: insights from detrital zircons in Upper Jurassic conglomerates, Mountainous Crimea. International Journal of Earth Sciences, 2019, 108, 2407-2428.	0.9	15
348	Discussion of "Enigmatic super-reduced phases in corundum from natural rocks: Possible contamination from artificial abrasive materials or metallurgical slags―by Litasov etÂal. (Lithos,) Tj ETQq0 0 0 r	ˈgBƊ / Øverl	ochal OTf 50
349	A reappraisal of the metamorphic history of the Tehuitzingo chromitite, Puebla state, Mexico. International Geology Review, 2019, 61, 1706-1727.	1.1	15
350	Parageneses of TiB2 in corundum xenoliths from Mt. Carmel, Israel: Siderophile behavior of boron under reducing conditions. American Mineralogist, 2020, 105, 1609-1621.	0.9	15
351	In-situ mineralogical interpretation of the mantle geophysical signature of the Gangdese Cu-porphyry mineral system. Gondwana Research, 2022, 111, 53-63.	3.0	15
352	Nuclear microprobe analysis of melt inclusions in minerals: Windows on metasomatic processes in the earth's mantle. Nuclear Instruments & Methods in Physics Research B, 2001, 181, 578-585.	0.6	14
353	Co-rich sulfides in mantle peridotites from Penghu Islands, Taiwan: Footprints of Proterozoic mantle plumes under the Cathaysia Block. Journal of Asian Earth Sciences, 2010, 37, 229-245.	1.0	14
354	Intrusion and contamination of high-temperature dunitic magma: the Nordre Bumandsfjord pluton, Seiland, Arctic Norway. Contributions To Mineralogy and Petrology, 2013, 165, 903-930.	1.2	14
355	Gold in the mantle: The role of pyroxenites. Lithos, 2016, 244, 205-217.	0.6	14
356	Discovery of the first natural hydride. American Mineralogist, 2019, 104, 611-614.	0.9	14
357	Temporal changes in subduction- to collision-related magmatism in the Neotethyan orogen: The Southeast Iran example. Earth-Science Reviews, 2022, 226, 103930.	4.0	14
358	Plagioclase-spinel intergrowths in alkali basaltic rocks from the Southern Highlands, N.S.W Contributions To Mineralogy and Petrology, 1973, 38, 167-175.	1.2	13
359	Upper mantle structure beneath eastern Siberia: Evidence from gravity modeling and mantle petrology. Geochemistry, Geophysics, Geosystems, 2003, 4, .	1.0	13
360	lsotope fractionation of neon during stepheating extraction?: a comment on â€~Reâ€interpretation of the existence of a primitive plume under Australia based on neon isotope fractionation during step heating' by Gautheron and Moreira (2003). Terra Nova, 2004, 16, 23-26.	0.9	13

#	Article	IF	CITATIONS
361	Petrology and Sr–Nd–Hf isotope geochemistry of gabbro xenoliths from the Hyblean Plateau: a MARID reservoir beneath SE Sicily?. Contributions To Mineralogy and Petrology, 2009, 157, 1-22.	1.2	13
362	Metasomatic control of hydrogen contents in the layered cratonic mantle lithosphere sampled by Lac de Gras xenoliths in the central Slave craton, Canada. Geochimica Et Cosmochimica Acta, 2020, 286, 29-53.	1.6	13
363	Immiscible metallic melts in the deep Earth: clues from moissanite (SiC) in volcanic rocks. Science Bulletin, 2020, 65, 1479-1488.	4.3	13
364	Applications of OlivineOrthopyroxeneSpinel Oxygen Geobarometers to the Redox State of the Upper Mantle. Journal of Petrology, 1991, Special_Volume, 291-306.	1.1	12
365	A cobalt-rich spinel inclusion in a sapphire from Bo Ploi, Thailand. Mineralogical Magazine, 1994, 58, 247-258.	0.6	12
366	Archean mantle contributes to the genesis of chromitite in the Palaeozoic Sartohay ophiolite, Asiatic Orogenic Belt, northwestern China. Precambrian Research, 2012, 216-219, 87-94.	1.2	12
367	Re-Os isotopic constraints on the evolution of the Bangong-Nujiang Tethyan oceanic mantle, Central Tibet. Lithos, 2015, 224-225, 32-45.	0.6	12
368	Lateral and Vertical Heterogeneity in the Lithospheric Mantle at the Northern Margin of the Pannonian Basin Reconstructed From Peridotite Xenolith Microstructures. Journal of Geophysical Research: Solid Earth, 2019, 124, 6315-6336.	1.4	12
369	Lithospheric memory of subduction in mantle pyroxenite xenoliths from rift-related basalts. Earth and Planetary Science Letters, 2020, 544, 116365.	1.8	12
370	Geochemistry and Origin of Sulphide Minerals in Mantle Xenoliths: Qilin, Southeastern China. , 0, .		12
371	Thermochemical structure and evolution of cratonic lithosphere in central and southern Africa. Nature Geoscience, 2022, 15, 405-410.	5.4	12
372	Petrological Evolution of the European Lithospheric Mantle: from Archean to Present Day. Journal of Petrology, 2009, 50, 1181-1184.	1.1	11
373	First results of isotopic dating of detrital zircons from the clastic rocks of the Pre-Uralides-Timanides complexes: Contribution in the Late Precambrian stratigraphy of the Enganepe Uplift, Western Polar Urals. Doklady Earth Sciences, 2009, 424, 41-46.	0.2	11
374	Sources of cratonic metasomatic fluids: In situ LA-MC-ICPMS analysis of Sr, Nd, Hf and Pb isotopes in Lima from the Jagersfontein Kimberlite. Numerische Mathematik, 2014, 314, 435-461.	0.7	11
375	Constraints from zircon Hf-O-Li isotopic compositions on the genesis of slightly low-δ18O alkaline granites in the Taohuadao area, Zhejiang Province, SE China. Journal of Asian Earth Sciences, 2018, 167, 197-208.	1.0	11
376	New constraints on the source, composition, and post-emplacement modification of kimberlites from in situ C–O–Sr-isotope analyses of carbonates from the Benfontein sills (South Africa). Contributions To Mineralogy and Petrology, 2020, 175, 1.	1.2	11
377	Comment on "Ultra-high pressure and ultra-reduced minerals in ophiolites may form by lightning strikes―by Ballhaus et al., 2017: Ultra-high pressure and super-reduced minerals in ophiolites do not form by lightning strikes. Geochemical Perspectives Letters, 0, , 1-2.	1.0	11
378	Heterogeneity in the thermal state of the lower crust and upper mantle beneath eastern Australia. Exploration Geophysics, 1991, 22, 295-298.	0.5	10

#	Article	IF	CITATIONS
379	Deformation microstructures reveal a complex mantle history for polycrystalline diamond. Geochemistry, Geophysics, Geosystems, 2012, 13, .	1.0	10
380	Carboniferous and Permian granites of the northern Tasman orogenic belt, Queensland, Australia: insights into petrogenesis and crustal evolution from an in situ zircon study. International Journal of Earth Sciences, 2013, 102, 647-669.	0.9	10
381	Ancient mantle lithosphere beneath the Khanka massif in the Russian Far East: <i>inÂsitu</i> Re–Os evidence. Terra Nova, 2015, 27, 277-284.	0.9	10
382	Carbon isotopes of eclogite-hosted diamonds from the Nyurbinskaya kimberlite pipe, Yakutia: The metasomatic origin of diamonds. Chemical Geology, 2017, 455, 131-147.	1.4	10
383	Ti3+ in corundum traces crystal growth in a highly reduced magma. Scientific Reports, 2021, 11, 2439.	1.6	10
384	Deep lithosphere of the North China Craton archives the fate of the Paleo-Asian Ocean. Earth-Science Reviews, 2021, 215, 103554.	4.0	10
385	Immiscible metallic melts in the upper mantle beneath Mount Carmel, Israel: Silicides, phosphides, and carbides. American Mineralogist, 2022, 107, 532-549.	0.9	10
386	Melt Migration and Interaction in a Dunite Channel System within Oceanic Forearc Mantle: the Yushigou Harzburgite–Dunite Associations, North Qilian Ophiolite (NW China). Journal of Petrology, 2021, 62, .	1.1	10
387	Rb/Sr evidence for the nature of the mantle, thermal events and volcanic activity of the Southeastern Australian continental margin. Journal of Volcanology and Geothermal Research, 1984, 21, 107-117.	0.8	9
388	The boundary phase and the melting of CaSiO 3 and MgSiO 3 perovskites. Journal of Physics and Chemistry of Solids, 2000, 61, 1815-1820.	1.9	9
389	Petrogenesis and its significance to continental dynamics of the Neogene high-potassium calc-alkaline volcanic rock association from north Qiangtang, Tibetan Plateau. Science in China Series D: Earth Sciences, 2001, 44, 45-55.	0.9	9
390	First isotopic data on detrital zircons from the Engane-Pe Uplift (western Polar Urals): Implications for the primary tectonic position of the Pre-Uralides-Timanides. Doklady Earth Sciences, 2009, 426, 567-573.	0.2	9
391	Petrological evolution of the European lithospheric mantle: introduction. Geological Society Special Publication, 2010, 337, 1-5.	0.8	9
392	Reworking of old continental lithosphere: Unradiogenic Os and decoupled Hf Nd isotopes in sub-arc mantle pyroxenites. Lithos, 2020, 354-355, 105346.	0.6	9
393	Pyroxenite Xenoliths Record Complex Melt Impregnation in the Deep Lithosphere of the Northwestern North China Craton. Journal of Petrology, 2021, 62, .	1.1	9
394	Lithosphere structure and evolution in southeastern Australia. , 2003, , .		8
395	Timing the tectonic mingling of ultramafic rocks and metasediments in the southern section of the coastal accretionary complex of central Chile. International Geology Review, 2018, 60, 2031-2045.	1.1	8
396	Discussion: The Sydney Basin: Composition of basement. Australian Journal of Earth Sciences, 1990, 37, 485-486.	0.4	7

#	Article	IF	CITATIONS
397	Almandine megacrysts from Yingfengling Cenozoic basalt in Leizhou Peninsula and their parental magma origin. Science Bulletin, 2001, 46, 1215-1219.	1.7	7
398	Temporal and genetic relationships between the Kidston gold-bearing Breccia Pipe and the Lochaber Ring Dyke Complex, North Queensland, Australia: insights from in situ U–Pb and Hf-isotope analysis of zircon. Mineralogy and Petrology, 2009, 95, 17-45.	0.4	7
399	Lithospheric mantle evolution beneath northeast Australia. Lithos, 2011, 125, 405-422.	0.6	7
400	Clobal- to Deposit-Scale Controls on Orthomagmatic Ni-Cu(-PGE) and PGE Reef Ore Formation. , 2018, , 1-46.		7
401	Melting Dynamics of Late Cretaceous Lamprophyres in Central Asia Suggest a Mechanism to Explain Many Continental Intraplate Basaltic Suite Magmatic Provinces. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB021663.	1.4	7
402	Single zircon LAM-ICPMS U-Pb dating of Guidong complex (SE China) and its petrogenetic significance. Science Bulletin, 2003, 48, 1892.	1.7	7
403	Paleogeothermal gradients in Australia: Key to 4â€Ð lithosphere mapping*. Australian Journal of Earth Sciences, 1998, 45, 817-821.	0.4	6
404	Trace-element of Tuoyun clinopyroxene: Implication for the deep processes of lithospheric mantle beneath the southwest Tianshan, West China. Science Bulletin, 2001, 46, 1206-1211.	1.7	6
405	Seeking the primary compositions of mantle xenoliths: Isotopic and elemental consequences of sequential leaching treatments on an eclogite suite. Chemical Geology, 2012, 328, 137-148.	1.4	6
406	Granulite facies xenoliths from the Yuhuashan complex, central Jiangxi, South China: constraints on Late Palaeozoic orogeny and middle″ower crust components. Journal of Metamorphic Geology, 2016, 34, 45-61.	1.6	6
407	The Earliest Subcontinental Lithospheric Mantle. , 2019, , 81-102.		6
408	Re-Os Isotope Systematics of Sulfides in Chromitites and Host Lherzolites of the Andaman Ophiolite, India. Minerals (Basel, Switzerland), 2020, 10, 686.	0.8	6
409	Oceanization of the subcontinental lithospheric mantle recorded in the Yunzhug ophiolite, Central Tibetan Plateau. Lithos, 2020, 370-371, 105612.	0.6	6
410	DEPLETED SSZ TYPE MANTLE PERIDOTITES IN PROTEROZOIC EASTERN SAYAN OPHIOLITES IN SIBERIA. Geodinamika I Tektonofizika, 2017, 8, 583-587.	0.3	6
411	Structure and composition of the lithosphere beneath Mount Carmel, North Israel. Contributions To Mineralogy and Petrology, 2022, 177, 1.	1.2	6
412	Journey beneath southern Africa. Nature, 2001, 412, 777-780.	13.7	5
413	Variations of the Effective Elastic Thickness (Te) and Structure of the Lithosphere Beneath the Slave Province, Canada. Exploration Geophysics, 2005, 36, 266-271.	0.5	5
414	Deposits associated with ultramafic–mafic complexes in Mexico: the Loma Baya case. Ore Geology Reviews, 2017, 81, 1053-1065.	1.1	5

#	Article	IF	CITATIONS
415	Tracking the birth and growth of Cimmeria: Geochronology and origins of intrusive rocks from NW Iran. Gondwana Research, 2020, 87, 188-206.	3.0	5
416	Metasomatism versus host magma infiltration: A case study of Sal mantle xenoliths, Cape Verde Archipelago. , 2011, , .		4
417	Nitrogen under Super-Reducing Conditions: Ti Oxynitride Melts in Xenolithic Corundum Aggregates from Mt Carmel (N. Israel). Minerals (Basel, Switzerland), 2021, 11, 780.	0.8	4
418	Trace element characteristics in the diopsides of peridotite xenoliths: a laser ablation-inductively coupled plasma-mass spectrometry study. Science Bulletin, 1998, 43, 579-583.	1.7	3
419	Feedback of mantle metasomatism on olivine micro–fabric and seismic properties of the deep lithosphere. Lithos, 2019, 328-329, 43-57.	0.6	3
420	The microstructure of layered ultramafic cumulates: Case study of the Bear Creek intrusion, Trinity ophiolite, California, USA. Lithos, 2021, 388-389, 106047.	0.6	3
421	Open System Re-Os Isotope Behavior in Platinum-Group Minerals during Laterization?. Minerals (Basel,) Tj ETQq1	1 0.78431 0.8	L4 ₃ rgBT /Ove
422	Geochemical variability among stratiform chromitites and ultramafic rocks from Western Makran, South Iran. Lithos, 2022, 412-413, 106591.	0.6	3
423	Temporal correlation of magmatic-tectonic events in the lower and upper crust in north-east Australia. International Journal of Earth Sciences, 2012, 101, 1091-1109.	0.9	2
424	Corrigendum to "Sulfide in dunite channels reflects long-distance reactive migration of mid-ocean-ridge melts from mantle source to crust: A Re-Os isotopic perspective―[Earth Planet. Sci. Lett. 531 (2020) 115969]. Earth and Planetary Science Letters, 2020, 535, 116136.	1.8	2
425	The subantarctic lithospheric mantle. Geological Society Memoir, 2023, 56, 115-132.	0.9	2
426	Uplift of the southeastern Australian lithosphere: Thermal-tectonic evolution of garnet pyroxenite xenoliths from western Victoria. Special Paper of the Geological Society of America, 2017, , 27-48.	0.5	1
427	Granulite xenoliths from Cenozoic Basalts in SE China provide geochemical fingerprints to distinguish lower crust terranes from the North and South China tectonic blocks—Reply. Lithos, 2004, 73, 135-144.	0.6	1
428	Element diffusion ability in metasomatic agents and its effect on chemical characteristics of metasomatized peridotites. Science in China Series D: Earth Sciences, 2006, 49, 926-937.	0.9	1
429	Geochronology in New South Wales. Australian Journal of Earth Sciences, 2008, 55, 737-740.	0.4	1
430	Geoscience Data Integration: Insights into Mapping Lithospheric Architecture. ASEG Extended Abstracts, 2015, 2015, 1-2.	0.1	1
431	Complex evolution of the lower crust beneath the southeastern North China Craton: The Junan xenoliths and xenocrysts: Reply. Lithos, 2015, 234-235, 96-99.	0.6	1
432	Making and unmaking continental mantle: Geochemical and geophysical perspectives. Acta Geologica Sinica, 2019, 93, 249-250.	0.8	1

#	Article	IF	CITATIONS
433	Reply to dunite magma or ultramafic cumulates? A discussion of Griffin et al. "Intrusion and contamination of high-temperature dunite magma: the Nordre Bumandsfjord pluton, Seiland, Arctic Norway― Contributions To Mineralogy and Petrology, 2013, 166, 1543-1544.	1.2	0
434	Petrogenesis and geochronology of Cretaceous adakitic, I- and A-type granitoids in the NE Yangtze block: Constraints on the eastern subsurface boundary between the North and South China blocks: Reply. Lithos, 2014, 196-197, 380-383.	0.6	0
435	Lithospheric mapping: a pathfinder for hidden terrane and ore systems in southren Lhasa block. Acta Geologica Sinica, 2019, 93, 204-204.	0.8	0
436	Sulfide Aggregation in Ophiolitic Dunite Channels Explains Osâ€Isotope Mismatch between Oceanic Crust and Mantle. Acta Geologica Sinica, 2020, 94, 66-66.	0.8	0
437	The integration of geophysics and geochemistry reveals the nature of the lithosphere beneath the Slave Craton (Canada). ASEG Extended Abstracts, 2004, 2004, 1-3.	0.1	0
438	The evolution of lithospheric domains: A new framework to enhance mineral exploration targeting. , 2005, , 41-44.		0