List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/425518/publications.pdf Version: 2024-02-01

		19657	40979
251	12,066	61	93
papers	citations	h-index	g-index
253 all docs	253 docs citations	253 times ranked	8373 citing authors

#	Article	IF	CITATIONS
1	UVA LEDs and solar light photocatalytic oxidation/ozonation as a tertiary treatment using supported TiO2: With an eye on the photochemical properties of the secondary effluent. Journal of Environmental Chemical Engineering, 2022, 10, 107371.	6.7	4
2	Critical aspects of the stability and catalytic activity of MIL-100(Fe) in different advanced oxidation processes. Separation and Purification Technology, 2021, 255, 117660.	7.9	49
3	The Role of Catalytic Ozonation Processes on the Elimination of DBPs and Their Precursors in Drinking Water Treatment. Catalysts, 2021, 11, 521.	3.5	21
4	Photo-assisted ozonation of cefuroxime with solar radiation in a CPC pilot plant. Kinetic parameters determination. Separation and Purification Technology, 2021, 266, 118514.	7.9	8
5	Photocatalytic ozonation in water treatment: Is there really a synergy between systems?. Water Research, 2021, 206, 117727.	11.3	11
6	Six Flux Model for the Central Lamp Reactor Applied to an External Four-Lamp Reactor. Catalysts, 2021, 11, 1190.	3.5	2
7	Effective degradation of cefuroxime by heterogeneous photo-Fenton under simulated solar radiation using α-Fe2O3-TiO2. Journal of Environmental Chemical Engineering, 2021, 9, 106822.	6.7	9
8	Magnetic graphene TiO2-based photocatalyst for the removal of pollutants of emerging concern in water by simulated sunlight aided photocatalytic ozonation. Applied Catalysis B: Environmental, 2020, 262, 118275.	20.2	59
9	Comparison of graphene oxide titania catalysts for their use in photocatalytic ozonation of water contaminants: Application to oxalic acid removal. Chemical Engineering Journal, 2020, 385, 123922.	12.7	16
10	Modeling the Mineralization Kinetics of Visible Led Graphene Oxide/Titania Photocatalytic Ozonation of an Urban Wastewater Containing Pharmaceutical Compounds. Catalysts, 2020, 10, 1256.	3.5	4
11	On the role of a graphene oxide/titania catalyst, visible LED and ozone in removing mixtures of pharmaceutical contaminants from water and wastewater. Environmental Science: Water Research and Technology, 2020, 6, 2352-2364.	2.4	14
12	Simulated solar photocatalytic ozonation of contaminants of emerging concern and effluent organic matter in secondary effluents by a reusable magnetic catalyst. Chemical Engineering Journal, 2020, 398, 125642.	12.7	25
13	Kinetic model basis of ozone/light-based advanced oxidation processes: a pseudoempirical approach. Environmental Science: Water Research and Technology, 2020, 6, 1176-1185.	2.4	7
14	Treatment of slaughterhouse wastewater by acid precipitation (H2SO4, HCl and HNO3) and oxidation (Ca(ClO)â,,, H2O2 and CaOâ,,). Journal of Environmental Management, 2019, 250, 109558.	7.8	17
15	Graphene-Based Catalysts for Ozone Processes to Decontaminate Water. Molecules, 2019, 24, 3438.	3.8	20
16	Simulated solar driven photolytic ozonation for the oxidation of aqueous recalcitrant-to-ozone tritosulfuron. Transformation products and toxicity. Journal of Environmental Management, 2019, 233, 513-522.	7.8	11
17	Removal of Organic Micropollutants from a Municipal Wastewater Secondary Effluent by UVA-LED Photocatalytic Ozonation. Catalysts, 2019, 9, 472.	3.5	22
18	Ozone-Based Advanced Oxidation Processes for Primidone Removal in Water using Simulated Solar Radiation and TiO2 or WO3 as Photocatalyst. Molecules, 2019, 24, 1728.	3.8	18

#	Article	IF	CITATIONS
19	Application of solar photocatalytic ozonation in water treatment using supported TiO2. Applied Catalysis B: Environmental, 2019, 254, 237-245.	20.2	44
20	Graphene oxide/titania photocatalytic ozonation of primidone in a visible LED photoreactor. Journal of Hazardous Materials, 2019, 369, 70-78.	12.4	41
21	The added value of a zebrafish embryo–larval model in the assessment of wastewater tertiary treatments. Environmental Science: Water Research and Technology, 2019, 5, 2269-2279.	2.4	10
22	Treatment of highly polluted industrial wastewater by means of sequential aerobic biological oxidation-ozone based AOPs. Chemical Engineering Journal, 2019, 361, 89-98.	12.7	91
23	Sunlight driven photolytic ozonation as an advanced oxidation process in the oxidation of bezafibrate, cotinine and iopamidol. Water Research, 2019, 151, 226-242.	11.3	26
24	Solar photolytic ozonation for the removal of recalcitrant herbicides in river water. Separation and Purification Technology, 2019, 212, 280-288.	7.9	14
25	TiO2 photocatalytic oxidation of a mixture of emerging contaminants: A kinetic study independent of radiation absorption based on the direct-indirect model. Chemical Engineering Journal, 2018, 339, 369-380.	12.7	32
26	Free Radical and Direct Ozone Reaction Competition to Remove Priority and Pharmaceutical Water Contaminants with Single and Hydrogen Peroxide Ozonation Systems. Ozone: Science and Engineering, 2018, 40, 251-265.	2.5	29
27	Impact of TiO2/UVA photocatalysis on THM formation potential. Catalysis Today, 2018, 313, 167-174.	4.4	7
28	Ecotoxicological efficiency of advanced ozonation processes with TiO2 and black light used in the degradation of carbamazepine. Environmental Science and Pollution Research, 2018, 25, 1670-1682.	5.3	10
29	Nanostructured CeO 2 as catalysts for different AOPs based in the application of ozone and simulated solar radiation. Catalysis Today, 2017, 280, 74-79.	4.4	34
30	Degradation of Phenolic Compounds in Aqueous Sucrose Solutions by Ozonation. Ozone: Science and Engineering, 2017, 39, 255-263.	2.5	6
31	Oxidative stress responses of Daphnia magna exposed to effluents spiked with emerging contaminants under ozonation and advanced oxidation processes. Environmental Science and Pollution Research, 2017, 24, 1735-1747.	5.3	14
32	Reaction mechanism and kinetics of DEET visible light assisted photocatalytic ozonation with WO3 catalyst. Applied Catalysis B: Environmental, 2017, 202, 460-472.	20.2	49
33	Solar or UVA-Visible Photocatalytic Ozonation of Water Contaminants. Molecules, 2017, 22, 1177.	3.8	38
34	Insights into the removal of terbuthylazine from aqueous solution by several treatment methods. Water Research, 2016, 98, 334-343.	11.3	40
35	Solar photo-ozonation: A novel treatment method for the degradation of water pollutants. Journal of Hazardous Materials, 2016, 317, 36-43.	12.4	44
36	Removal of emerging contaminants from a primary effluent of municipal wastewater by means of sequential biological degradation-solar photocatalytic oxidation processes. Chemical Engineering Journal, 2016, 290, 12-20.	12.7	104

#	Article	IF	CITATIONS
37	Removal of emerging contaminants from municipal WWTP secondary effluents by solar photocatalytic ozonation. A pilot-scale study. Separation and Purification Technology, 2015, 149, 132-139.	7.9	48
38	Influence of structural properties on the activity of WO 3 catalysts for visible light photocatalytic ozonation. Chemical Engineering Science, 2015, 126, 80-90.	3.8	44
39	Boron doped TiO2 catalysts for photocatalytic ozonation of aqueous mixtures of common pesticides: Diuron, o-phenylphenol, MCPA and terbuthylazine. Applied Catalysis B: Environmental, 2015, 178, 74-81.	20.2	103
40	Visible light photocatalytic ozonation of DEET in the presence of different forms of WO3. Catalysis Today, 2015, 252, 100-106.	4.4	28
41	FeOOH and derived phases: Efficient heterogeneous catalysts for clofibric acid degradation by advanced oxidation processes (AOPs). Catalysis Today, 2015, 240, 46-54.	4.4	45
42	Determination of main species involved in the first steps of TiO2 photocatalytic degradation of organics with the use of scavengers: The case of ofloxacin. Applied Catalysis B: Environmental, 2015, 178, 44-53.	20.2	193
43	Application of solar photocatalytic ozonation for the degradation of emerging contaminants in water in a pilot plant. Chemical Engineering Journal, 2015, 260, 399-410.	12.7	59
44	Iron-based catalysts for photocatalytic ozonation of some emerging pollutants of wastewater. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2015, 50, 553-62.	1.7	4
45	Enhanced activity and reusability of TiO2 loaded magnetic activated carbon for solar photocatalytic ozonation. Applied Catalysis B: Environmental, 2014, 144, 96-106.	20.2	82
46	WO3–TiO2 based catalysts for the simulated solar radiation assisted photocatalytic ozonation of emerging contaminants in a municipal wastewater treatment plant effluent. Applied Catalysis B: Environmental, 2014, 154-155, 274-284.	20.2	87
47	Ozonation of 4â€chloroâ€2â€methylphenoxyacetic acid (<scp>MCPA</scp>) in an activated sludge system. Journal of Chemical Technology and Biotechnology, 2014, 89, 1219-1227.	3.2	12
48	Solar photocatalytic ozonation of a mixture of pharmaceutical compounds in water. Chemosphere, 2014, 113, 71-78.	8.2	61
49	Some ozone advanced oxidation processes to improve the biological removal of selected pharmaceutical contaminants from urban wastewater. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2014, 49, 410-421.	1.7	36
50	Sequential ozone advanced oxidation and biological oxidation processes to remove selected pharmaceutical contaminants from an urban wastewater. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2014, 49, 1015-1022.	1.7	18
51	In situ generation of hydrogen peroxide from pharmaceuticals single ozonation: A comparative study of its application on Fenton like systems. Chemical Engineering Journal, 2014, 235, 46-51.	12.7	21
52	Mechanism considerations for photocatalytic oxidation, ozonation and photocatalytic ozonation of some pharmaceutical compounds in water. Journal of Environmental Management, 2013, 127, 114-124.	7.8	79
53	Determination of Rate Constants for Ozonation of Ofloxacin in Aqueous Solution. Ozone: Science and Engineering, 2013, 35, 186-195.	2.5	21
54	Combination of Blackâ€Light Photoâ€catalysis and Ozonation for Emerging Contaminants Degradation in Secondary Effluents. Chemical Engineering and Technology, 2013, 36, 492-499.	1.5	15

#	Article	IF	CITATIONS
55	Kinetic Studies on Black Light Photocatalytic Ozonation of Diclofenac and Sulfamethoxazole in Water. Industrial & Engineering Chemistry Research, 2012, 51, 4533-4544.	3.7	29
56	TiO2 and Fe (III) photocatalytic ozonation processes of a mixture of emergent contaminants of water. Water Research, 2012, 46, 152-166.	11.3	56
57	On ozone-photocatalysis synergism in black-light induced reactions: Oxidizing species production in photocatalytic ozonation versus heterogeneous photocatalysis. Chemical Engineering Journal, 2012, 204-206, 131-140.	12.7	52
58	Application of Ozone Involving Advanced Oxidation Processes to Remove Some Pharmaceutical Compounds from Urban Wastewaters. Ozone: Science and Engineering, 2012, 34, 3-15.	2.5	37
59	Kinetic modeling of granular activated carbon promoted ozonation of a food-processing secondary effluent. Chemical Engineering Journal, 2012, 183, 395-401.	12.7	13
60	Photocatalytic ozonation to remove the pharmaceutical diclofenac from water: Influence of variables. Chemical Engineering Journal, 2012, 189-190, 275-282.	12.7	110
61	Simulated solar-light assisted photocatalytic ozonation of metoprolol over titania-coated magnetic activated carbon. Applied Catalysis B: Environmental, 2012, 111-112, 246-253.	20.2	55
62	Removal of emergent contaminants: Integration of ozone and photocatalysis. Journal of Environmental Management, 2012, 100, 10-15.	7.8	59
63	Application of advanced oxidation processes to doxycycline and norfloxacin removal from water. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2011, 46, 944-951.	1.7	39
64	Catalytic ozonation promoted by alumina-based catalysts for the removal of some pharmaceutical compounds from water. Chemical Engineering Journal, 2011, 168, 1289-1295.	12.7	89
65	Decomposition of hydrogen peroxide in the presence of activated carbons with different characteristics. Journal of Chemical Technology and Biotechnology, 2011, 86, 595-600.	3.2	40
66	Photocatalytic degradation of organics in water in the presence of iron oxides: Effects of pH and light source. Applied Catalysis B: Environmental, 2011, 102, 572-583.	20.2	48
67	Granular activated carbon promoted ozonation of a food-processing secondary effluent. Journal of Hazardous Materials, 2011, 185, 776-783.	12.4	41
68	Waste Treatment: Biodegradation. , 2010, , 1804-1808.		0
69	Influence of oxygen and free radicals promoters on the UV-254nm photolysis of diclofenac. Chemical Engineering Journal, 2010, 163, 35-40.	12.7	30
70	Kinetic modeling of powdered activated carbon ozonation of sulfamethoxazole in water. Chemical Engineering Journal, 2010, 164, 70-76.	12.7	38
71	Diclofenac removal from water by ozone and photolytic TiO ₂ catalysed processes. Journal of Chemical Technology and Biotechnology, 2010, 85, 798-804.	3.2	80
72	Kinetic modelling of TOC removal in the photocatalytic ozonation of diclofenac aqueous solutions. Applied Catalysis B: Environmental, 2010, 100, 289-298.	20.2	50

#	Article	IF	CITATIONS
73	Degradation of bisphenol A in water by Fe(III)/UVA and Fe(III)/polycarboxylate/UVA photocatalysis. Water Science and Technology, 2010, 61, 2717-2722.	2.5	4
74	Treatment of Cheese Whey Wastewater: Combined Coagulationâ [°] Flocculation and Aerobic Biodegradation. Journal of Agricultural and Food Chemistry, 2010, 58, 7871-7877.	5.2	95
75	Perovskite Catalytic Ozonation of Some Pharmaceutical Compounds in Water. Ozone: Science and Engineering, 2010, 32, 230-237.	2.5	16
76	Mineralization of bisphenol A by advanced oxidation processes. Journal of Chemical Technology and Biotechnology, 2009, 84, 589-594.	3.2	43
77	Diclofenac removal from water with ozone and activated carbon. Journal of Hazardous Materials, 2009, 163, 768-776.	12.4	134
78	Mechanism and kinetic considerations of TOC removal from the powdered activated carbon ozonation of diclofenac aqueous solutions. Journal of Hazardous Materials, 2009, 169, 532-538.	12.4	41
79	Ozone treatment of PAH contaminated soils: Operating variables effect. Journal of Hazardous Materials, 2009, 169, 509-515.	12.4	49
80	Effects of some carboxylic acids on the Fe(III)/UVA photocatalytic oxidation of muconic acid in water. Applied Catalysis B: Environmental, 2009, 89, 214-222.	20.2	56
81	Photocatalytic degradation of organics in water in the presence of iron oxides: Influence of carboxylic acids. Applied Catalysis B: Environmental, 2009, 92, 240-249.	20.2	76
82	A comparison between catalytic ozonation and activated carbon adsorption/ozone-regeneration processes for wastewater treatment. Applied Catalysis B: Environmental, 2009, 92, 393-400.	20.2	84
83	Catalysts to improve the abatement of sulfamethoxazole and the resulting organic carbon in water during ozonation. Applied Catalysis B: Environmental, 2009, 92, 262-270.	20.2	54
84	Wastewater recycling: Application of ozone based treatments to secondary effluents. Chemosphere, 2009, 74, 854-859.	8.2	27
85	Ozonation of the pharmaceutical compound ranitidine: Reactivity and kinetic aspects. Chemosphere, 2009, 76, 651-656.	8.2	32
86	Mechanism and kinetics of sulfamethoxazole photocatalytic ozonation in water. Water Research, 2009, 43, 1359-1369.	11.3	117
87	Ozone-activated Carbon Mineralization of 17-α-Ethynylestradiol Aqueous Solutions. Ozone: Science and Engineering, 2009, 31, 422-427.	2.5	4
88	Comparison of different advanced oxidation processes (AOPs) in the presence of perovskites. Journal of Hazardous Materials, 2008, 155, 407-414.	12.4	33
89	Kinetics of Ozone Decomposition by Granular Activated Carbon. Industrial & Engineering Chemistry Research, 2008, 47, 2545-2553.	3.7	32
90	Ozone and photocatalytic processes to remove the antibiotic sulfamethoxazole from water. Water Research, 2008, 42, 3799-3808.	11.3	228

#	Article	IF	CITATIONS
91	Influence of resorcinol chemical oxidation on the removal of resulting organic carbon by activated carbon adsorption. Chemosphere, 2008, 70, 1366-1374.	8.2	22
92	Kinetics of Activated Carbon Promoted Ozonation of Polyphenol Mixtures in Water. Industrial & Engineering Chemistry Research, 2008, 47, 1058-1065.	3.7	8
93	Sequential Use of Bentonites and Solar Photocatalysis to Treat Winery Wastewater. Journal of Agricultural and Food Chemistry, 2008, 56, 11956-11961.	5.2	7
94	Photocatalytic ozonation of phenolic wastewaters: Syringic acid, tyrosol and gallic acid. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2007, 43, 61-69.	1.7	12
95	Homogeneous iron-catalyzed photochemical degradation of muconic acid in water. Water Research, 2007, 41, 1325-1333.	11.3	25
96	Photocatalytic promoted oxidation of phenolic mixtures: An insight into the operating and mechanistic aspects. Water Research, 2007, 41, 4672-4684.	11.3	35
97	Photocatalysis of fluorene adsorbed onto TiO2. Chemosphere, 2007, 69, 595-604.	8.2	12
98	Activated Carbon Promoted Ozonation of Polyphenol Mixtures in Water:  Comparison with Single Ozonation. Industrial & Engineering Chemistry Research, 2007, 46, 8241-8247.	3.7	17
99	Photocatalytic Ozonation of Winery Wastewaters. Journal of Agricultural and Food Chemistry, 2007, 55, 9944-9950.	5.2	59
100	Preparation and structural characterization of Co/Al2O3 catalysts for the ozonation of pyruvic acid. Applied Catalysis B: Environmental, 2007, 72, 322-330.	20.2	84
101	Ozonation of phenolic wastewaters in the presence of a perovskite type catalyst. Applied Catalysis B: Environmental, 2007, 74, 203-210.	20.2	60
102	Effects of Different Catalysts on the Ozonation of Pyruvic Acid in Water. Ozone: Science and Engineering, 2006, 28, 229-235.	2.5	12
103	Kinetics of Activated Carbon Promoted Ozonation of Succinic Acid in Water. Industrial & Engineering Chemistry Research, 2006, 45, 3015-3021.	3.7	12
104	The influence of various factors on aqueous ozone decomposition by granular activated carbons and the development of a mechanistic approach. Carbon, 2006, 44, 3102-3112.	10.3	154
105	Adsorption of landfill leachates onto activated carbonEquilibrium and kinetics. Journal of Hazardous Materials, 2006, 131, 170-178.	12.4	56
106	Kinetics of the ozonation of muconic acid in water. Journal of Hazardous Materials, 2006, 138, 534-538.	12.4	16
107	Perovskite catalytic ozonation of pyruvic acid in waterOperating conditions influence and kinetics. Applied Catalysis B: Environmental, 2006, 62, 93-103.	20.2	47
108	Gallic acid water ozonation using activated carbon. Applied Catalysis B: Environmental, 2006, 63, 249-259.	20.2	76

#	Article	IF	CITATIONS
109	Catalytic ozonation of phenolic compoundsThe case of gallic acid. Applied Catalysis B: Environmental, 2006, 67, 177-186.	20.2	55
110	Photocatalytic ozonation of gallic acid in water. Journal of Chemical Technology and Biotechnology, 2006, 81, 1787-1796.	3.2	28
111	Fluorene Oxidation by Coupling of Ozone, Radiation, and Semiconductors:Â A Mathematical Approach to the Kinetics. Industrial & Engineering Chemistry Research, 2006, 45, 166-174.	3.7	39
112	Phenol and substituted phenols AOPs remediation. Journal of Hazardous Materials, 2005, 119, 99-108.	12.4	141
113	Integration of Ozonation and an Anaerobic Sequencing Batch Reactor (AnSBR) for the Treatment of Cherry Stillage. Biotechnology Progress, 2005, 21, 1543-1551.	2.6	11
114	Comparison between photocatalytic ozonation and other oxidation processes for the removal of phenols from water. Journal of Chemical Technology and Biotechnology, 2005, 80, 973-984.	3.2	91
115	Ozonation of activated carbons: Effect on the adsorption of selected phenolic compounds from aqueous solutions. Journal of Colloid and Interface Science, 2005, 283, 503-512.	9.4	141
116	Kinetics of the Ozone-p-Chlorobenzoic Acid Reaction. Ozone: Science and Engineering, 2005, 27, 3-9.	2.5	11
117	Pyruvic Acid Removal from Water by the Simultaneous Action of Ozone and Activated Carbon. Ozone: Science and Engineering, 2005, 27, 159-169.	2.5	28
118	Oxone-Promoted Wet Air Oxidation of Landfill Leachates. Industrial & Engineering Chemistry Research, 2005, 44, 749-758.	3.7	52
119	Study of Different Integrated Physicalâ^'Chemical + Adsorption Processes for Landfill Leachate Remediation. Industrial & Engineering Chemistry Research, 2005, 44, 2871-2878.	3.7	32
120	Photocatalytic Enhanced Oxidation of Fluorene in Water with Ozone. Comparison with Other Chemical Oxidation Methods. Industrial & Engineering Chemistry Research, 2005, 44, 3419-3425.	3.7	27
121	Iron type catalysts for the ozonation of oxalic acid in water. Water Research, 2005, 39, 3553-3564.	11.3	217
122	A TiO2/Al2O3 catalyst to improve the ozonation of oxalic acid in water. Applied Catalysis B: Environmental, 2004, 47, 101-109.	20.2	124
123	Simazine Fenton's oxidation in a continuous reactor. Applied Catalysis B: Environmental, 2004, 48, 249-258.	20.2	45
124	Stabilized leachates: sequential coagulation–flocculation + chemical oxidation process. Journal of Hazardous Materials, 2004, 116, 95-102.	12.4	137
125	Wet Air and Extractive Ozone Regeneration of 4-Chloro-2-methylphenoxyacetic Acid Saturated Activated Carbons. Industrial & Engineering Chemistry Research, 2004, 43, 4159-4165.	3.7	8
126	Comparison between thermal and ozone regenerations of spent activated carbon exhausted with phenol. Water Research, 2004, 38, 2155-2165.	11.3	149

#	Article	IF	CITATIONS
127	Wet peroxide degradation of atrazine. Chemosphere, 2004, 54, 71-78.	8.2	18
128	Incidence of an Ozonation Stage on the Treatment of Cherry Stillage by Activated Sludge. Ozone: Science and Engineering, 2004, 26, 257-266.	2.5	3
129	Activated Carbon Adsorption of Some Phenolic Compounds Present in Agroindustrial Wastewater. Adsorption, 2003, 9, 107-115.	3.0	106
130	Mineralization improvement of phenol aqueous solutions through heterogeneous catalytic ozonation. Journal of Chemical Technology and Biotechnology, 2003, 78, 1225-1233.	3.2	44
131	Treatment of brines by combined Fenton's reagent–aerobic biodegradation. Journal of Hazardous Materials, 2003, 96, 259-276.	12.4	37
132	Optimisation of Fenton's reagent usage as a pre-treatment for fermentation brines. Journal of Hazardous Materials, 2003, 96, 277-290.	12.4	60
133	Ozone-Enhanced Oxidation of Oxalic Acid in Water with Cobalt Catalysts. 2. Heterogeneous Catalytic Ozonation. Industrial & Engineering Chemistry Research, 2003, 42, 3218-3224.	3.7	81
134	Homogeneous Catalyzed Ozone Decomposition in the Presence of Co(II) Ozone: Science and Engineering, 2003, 25, 261-271.	2.5	11
135	Ozone-Enhanced Oxidation of Oxalic Acid in Water with Cobalt Catalysts. 1. Homogeneous Catalytic Ozonation. Industrial & Engineering Chemistry Research, 2003, 42, 3210-3217.	3.7	64
136	Stabilized leachates: ozone-activated carbon treatment and kinetics. Water Research, 2003, 37, 4823-4834.	11.3	111
137	Fenton-like Oxidation of Landfill Leachate. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2003, 38, 371-379.	1.7	40
138	An Attempt to Model the Kinetics of the Ozonation of Simazine in Water. Industrial & Engineering Chemistry Research, 2002, 41, 1723-1732.	3.7	30
139	Kinetics of Heterogeneous Catalytic Ozone Decomposition in Water on an Activated Carbon. Ozone: Science and Engineering, 2002, 24, 227-237.	2.5	130
140	Kinetics of Catalytic Ozonation of Oxalic Acid in Water with Activated Carbon. Industrial & Engineering Chemistry Research, 2002, 41, 6510-6517.	3.7	133
141	Catalytic ozonation of oxalic acid in an aqueous TiO2 slurry reactor. Applied Catalysis B: Environmental, 2002, 39, 221-231.	20.2	194
142	Use of the axial dispersion model to describe the O3and O3 /H2O2advanced oxidation of alachlor in water. Journal of Chemical Technology and Biotechnology, 2002, 77, 584-592.	3.2	11
143	Co-oxidation of p-hydroxybenzoic acid and atrazine by the Fenton's like system Fe(III)/H2O2. Journal of Hazardous Materials, 2002, 91, 143-157.	12.4	24
144	Formation of oxygen complexes by ozonation of carbonaceous materials prepared from cherry stones. Carbon, 2002, 40, 513-522.	10.3	59

#	Article	IF	CITATIONS
145	Formation of oxygen structures by ozonation of carbonaceous materials prepared from cherry stones. Carbon, 2002, 40, 523-529.	10.3	31
146	Chemical-Biological Treatment of Table Olive Manufacturing Wastewater. Journal of Environmental Engineering, ASCE, 2001, 127, 611-619.	1.4	28
147	Treatment of Olive Oil Mill Wastewater by Fenton's Reagent. Journal of Agricultural and Food Chemistry, 2001, 49, 1873-1880.	5.2	134
148	Oxidation of p-hydroxybenzoic acid by Fenton's reagent. Water Research, 2001, 35, 387-396.	11.3	197
149	pH sequential ozonation of domestic and wine-distillery wastewaters. Water Research, 2001, 35, 929-936.	11.3	55
150	HOMOGENEOUS CATALYZED OZONATION OF SIMAZINE. EFFECT OF Mn(II) AND Fe(II). Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2001, 36, 317-330.	1.5	28
151	Supercritical Water Oxidation of Olive Oil Mill Wastewater. Industrial & Engineering Chemistry Research, 2001, 40, 3670-3674.	3.7	48
152	Wet Air Oxidation Of Wastewater From Olive Oil Mills. Chemical Engineering and Technology, 2001, 24, 415-421.	1.5	36
153	Treatment of High Strength Distillery Wastewater (Cherry Stillage) by Integrated Aerobic Biological Oxidation and Ozonation. Biotechnology Progress, 2001, 17, 462-467.	2.6	64
154	Domestic Wastewater Ozonation: A Kinetic Model Approach. Ozone: Science and Engineering, 2001, 23, 219-228.	2.5	17
155	SIMAZINE REMOVAL FROM WATER IN A CONTINUOUS BUBBLE COLUMN BY O3AND O3/H2O2. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2001, 36, 809-819.	1.5	12
156	Determination of Kinetic Parameters of Ozone During Oxidations of Alachlor in Water. Water Environment Research, 2000, 72, 689-697.	2.7	15
157	Joint Treatment of Wastewater from Table Olive Processing and Urban Wastewater. Integrated Ozonation - Aerobic Oxidation. Chemical Engineering and Technology, 2000, 23, 177-181.	1.5	32
158	Continuous flow integrated chemical (ozone)-activated sludge system treating combined agroindustrial-domestic wastewater. Environmental Progress, 2000, 19, 28-35.	0.7	31
159	Chemical and photochemical degradation of acenaphthylene. Intermediate identification. Journal of Hazardous Materials, 2000, 75, 89-98.	12.4	64
160	Kinetic modelling of aqueous atrazine ozonation processes in a continuous flow bubble contactor. Journal of Hazardous Materials, 2000, 80, 189-206.	12.4	30
161	Estimation of Biological Kinetic Parameters from a Continuous Integrated Ozonation-Activated Sludge System Treating Domestic Wastewater. Biotechnology Progress, 2000, 16, 1018-1024.	2.6	9
162	Comparison of Different Treatments for Alachlor Removal from Water. Bulletin of Environmental Contamination and Toxicology, 2000, 65, 668-674.	2.7	1

#	Article	IF	CITATIONS
163	Joint aerobic biodegradation of wastewater from table olive manufacturing industries and urban wastewater. Bioprocess and Biosystems Engineering, 2000, 23, 0283-0286.	3.4	17
164	The use of ozone as a gas tracer for kinetic modeling of aqueous environmental ozonation processes. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2000, 35, 701-714.	1.7	0
165	Two-Step Wastewater Treatment: Sequential Ozonation - Aerobic Biodegradation. Ozone: Science and Engineering, 2000, 22, 617-636.	2.5	16
166	Kinetics of simazine advanced oxidation in water. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2000, 35, 439-454.	1.5	25
167	Kinetics Of Competitive Ozonation Of Some Phenolic Compounds Present In Wastewater From Food Processing Industries. Ozone: Science and Engineering, 2000, 22, 167-183.	2.5	33
168	Ozone remediation of some phenol compounds present in food processing wastewater. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2000, 35, 681-699.	1.7	8
169	Sodium Dodecylbenzenesulfonate Removal from Water and Wastewater. 1. Kinetics of Decomposition by Ozonation. Industrial & Engineering Chemistry Research, 2000, 39, 2214-2220.	3.7	88
170	Sodium Dodecylbenzenesulfonate Removal from Water and Wastewater. 2. Kinetics of the Integrated Ozone-Activated Sludge System. Industrial & Engineering Chemistry Research, 2000, 39, 2221-2227.	3.7	22
171	Aqueous degradation of VOCs in the ozone combined with hydrogen peroxide or UV radiation processes. 2.Kinetic modeling. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 1999, 34, 673-693.	1.7	5
172	Atrazine removal by ozonation processes in surface waters. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 1999, 34, 449-468.	1.5	13
173	Estimation Of The Relative Importance Of Free Radical Oxidation And Direct Ozonation/UV Radiation Rates Of Micropollutants In Water. Ozone: Science and Engineering, 1999, 21, 207-228.	2.5	12
174	Aqueous degradation of VOCs in the ozone combined with hydrogen peroxide or UV radiation processes1. Experimental results. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 1999, 34, 649-671.	1.7	3
175	Wet air oxidation: a review of process technologies and aspects in reactor design. Chemical Engineering Journal, 1999, 73, 143-160.	12.7	232
176	Use of Ozone to Remove Alachlor from Surface Water. Bulletin of Environmental Contamination and Toxicology, 1999, 62, 324-329.	2.7	15
177	Use of Ozone and Hydrogen Peroxide to Remove Alachlor from Surface Water. Bulletin of Environmental Contamination and Toxicology, 1999, 63, 9-14.	2.7	9
178	Degradation of maleic acid in a wet air oxidation environment in the presence and absence of a platinum catalyst. Applied Catalysis B: Environmental, 1999, 22, 279-291.	20.2	19
179	Hydrogen peroxide promoted wet air oxidation of phenol: influence of operating conditions and homogeneous metal catalysts. , 1999, 74, 390-398.		64
180	Integration of continuous biological and chemical (ozone) treatment of domestic wastewater: 1. Biodegradation and post-ozonation. , 1999, 74, 877-883.		16

#	Article	IF	CITATIONS
181	Integration of continuous biological and chemical (ozone) treatment of domestic wastewater: 2. Ozonation followed by biological oxidation. , 1999, 74, 884-890.		21
182	A Kinetic Model for Advanced Oxidation Processes of Aromatic Hydrocarbons in Water:Â Application to Phenanthrene and Nitrobenzene. Industrial & Engineering Chemistry Research, 1999, 38, 4189-4199.	3.7	84
183	Effects of single and combined ozonation with hydrogen peroxide or UV radiation on the chemical degradation and biodegradability of debittering table olive industrial wastewaters. Water Research, 1999, 33, 723-732.	11.3	92
184	Wine Distillery Wastewater Degradation. 1. Oxidative Treatment Using Ozone and Its Effect on the Wastewater Biodegradability. Journal of Agricultural and Food Chemistry, 1999, 47, 3911-3918.	5.2	81
185	Wine Distillery Wastewater Degradation. 2. Improvement of Aerobic Biodegradation by Means of an Integrated Chemical (Ozone)â [~] Biological Treatment. Journal of Agricultural and Food Chemistry, 1999, 47, 3919-3924.	5.2	48
186	Improvement of domestic wastewater primary sedimentation through ozonation. Ozone: Science and Engineering, 1999, 21, 605-614.	2.5	6
187	Fenton Reagent Advanced Oxidation of Polynuclear Aromatic Hydrocarbons in Water. Water, Air, and Soil Pollution, 1998, 105, 685-700.	2.4	88
188	Development of a model for the wet air oxidation of phenol based on a free radical mechanism. Chemical Engineering Science, 1998, 53, 2575-2586.	3.8	110
189	Pyrolysis/gasification of agricultural residues by carbon dioxide in the presence of different additives: influence of variables. Fuel Processing Technology, 1998, 55, 219-233.	7.2	133
190	Aqueous degradation of atrazine and some of its main by-products with ozone/hydrogen peroxide. , 1998, 71, 345-355.		37
191	Nitroaromatic Hydrocarbon Ozonation in Water. 2. Combined Ozonation with Hydrogen Peroxide or UV Radiation. Industrial & Engineering Chemistry Research, 1998, 37, 32-40.	3.7	67
192	Nitroaromatic Hydrocarbon Ozonation in Water. 1. Single Ozonation. Industrial & Engineering Chemistry Research, 1998, 37, 25-31.	3.7	88
193	Comparison Of Ozonation Kinetic Data From Film and Danckwerts Theories. Ozone: Science and Engineering, 1998, 20, 403-420.	2.5	14
194	Kinetic modelling of aqueous trichloroethylene direct ozonation in a continuous tank. Journal of Environmental Science and Health Part A: Environmental Science and Engineering, 1997, 32, 2471-2482.	0.1	1
195	Impact of chemical oxidation on biological treatment of a primary municipal wastewater. 1. Effects on cod and biodegradability. Ozone: Science and Engineering, 1997, 19, 495-512.	2.5	23
196	Henry And Mass Transfer Coefficients In The Ozonation Of Wastewaters. Ozone: Science and Engineering, 1997, 19, 281-296.	2.5	27
197	Elimination pathways during water ozonation of volatile organochlorine compounds. Toxicological and Environmental Chemistry, 1997, 63, 107-118.	1.2	4
198	Theoretical Aspects Of The Kinetics Of Competitive First Reactions Of Ozone In The O ₃ /H ₂ O ₂ And O ₃ /UV Oxidation Processes. Ozone: Science and Engineering, 1997, 19, 13-38.	2.5	33

#	Article	IF	CITATIONS
199	Impact of chemical oxidation on biological treatment of a primary municipal wastewater. 2. Effects of ozonation on kinetics of biological oxidation. Ozone: Science and Engineering, 1997, 19, 513-526.	2.5	12
200	Catalyzed Pyrolysis of Grape and Olive Bagasse. Influence of Catalyst Type and Chemical Treatment. Industrial & Engineering Chemistry Research, 1997, 36, 4176-4183.	3.7	85
201	Industrial wastewater advanced oxidation. Part 1. UV radiation in the presence and absence of hydrogen peroxide. Water Research, 1997, 31, 2405-2414.	11.3	77
202	Industrial wastewater advanced oxidation. Part 2. Ozone combined with hydrogen peroxide or UV radiation. Water Research, 1997, 31, 2415-2428.	11.3	101
203	Wet Air Oxidation of Phenol. Chemical Engineering Research and Design, 1997, 75, 257-265.	5.6	69
204	Estimation of biological kinetic parameters from an analysis of the BOD curve of waste waters-effects of a chemical preoxidation. Acta Biotechnologica, 1997, 17, 207-221.	0.9	7
205	Pyrolysis of maize, sunflower, grape and tobacco residues. Journal of Chemical Technology and Biotechnology, 1997, 70, 400-410.	3.2	72
206	Oxidation of Polynuclear Aromatic Hydrocarbons in Water. 3. UV Radiation Combined with Hydrogen Peroxide. Industrial & Engineering Chemistry Research, 1996, 35, 883-890.	3.7	84
207	Oxidation of Polynuclear Aromatic Hydrocarbons in Water. 4. Ozone Combined with Hydrogen Peroxide. Industrial & Engineering Chemistry Research, 1996, 35, 891-898.	3.7	49
208	Contribution of free radical oxidation to eliminate volatile organochlorine compounds in water by ultraviolet radiation and hydrogen peroxide. Chemosphere, 1996, 32, 1949-1961.	8.2	21
209	Aqueous uv radiation and uv/h ₂ o ₂ oxidation of atrazine first degradation products: Deethylatrazine and deisopropylatrazine. Environmental Toxicology and Chemistry, 1996, 15, 868-872.	4.3	38
210	Pyrolysis of two agricultural residues: Olive and grape bagasse. Influence of particle size and temperature. Biomass and Bioenergy, 1996, 11, 397-409.	5.7	167
211	Rate constant determination of ozoneâ€organic fast reactions in water using an agitated cell. Journal of Environmental Science and Health Part A: Environmental Science and Engineering, 1996, 31, 1159-1178.	0.1	15
212	AQUEOUS UV RADIATION AND UV/H2O2 OXIDATION OF ATRAZINE FIRST DEGRADATION PRODUCTS: DEETHYLATRAZINE AND DEISOPROPYLATRAZINE. Environmental Toxicology and Chemistry, 1996, 15, 868.	4.3	13
213	Chemical degradation of aldicarb in water using ozone. Journal of Chemical Technology and Biotechnology, 1995, 62, 272-278.	3.2	5
214	Combustion kinetics of agricultural wastes. Journal of Chemical Technology and Biotechnology, 1995, 64, 181-187.	3.2	17
215	Theoretical Aspects Of The Kinetics Of Competitive Ozone Reactions In Water. Ozone: Science and Engineering, 1995, 17, 163-181.	2.5	30
216	Modelling Industrial Wastewater Ozonation In Bubble Contactors. 2. Scale-up From Bench To Pilot Plant. Ozone: Science and Engineering, 1995, 17, 379-398.	2.5	12

#	Article	IF	CITATIONS
217	Origin and Conditions of Ketoacid Formation During Ozonation of Natural Organic Matter in Water. Ozone: Science and Engineering, 1995, 17, 647-656.	2.5	12
218	Application of photochemical reactor models to UV irradiation of trichloroethylene in water. Chemosphere, 1995, 31, 2873-2885.	8.2	12
219	Oxidation of Polynuclear Aromatic Hydrocarbons in Water. 2. UV Radiation and Ozonation in the Presence of UV Radiation. Industrial & Engineering Chemistry Research, 1995, 34, 1607-1615.	3.7	150
220	Oxidation of Polynuclear Aromatic Hydrocarbons in Water. 1. Ozonation. Industrial & Engineering Chemistry Research, 1995, 34, 1596-1606.	3.7	62
221	Modelling Industrial Wastewater Ozonation In Bubble Contactors. 1. Rate Coefficient Determination. Ozone: Science and Engineering, 1995, 17, 355-378.	2.5	28
222	Liquid phase oxidation of α-pinene initiated by ozone. 2: Formation of verbenol, verbenone and acid products. Chemical Engineering and Technology, 1994, 17, 187-194.	1.5	5
223	Advanced oxidation of atrazine in water—I. Ozonation. Water Research, 1994, 28, 2153-2164.	11.3	91
224	Advanced oxidation of atrazine in water—II. Ozonation combined with ultraviolet radiation. Water Research, 1994, 28, 2165-2174.	11.3	77
225	Oxidation of mecoprop in water with ozone and ozone combined with hydrogen peroxide. Industrial & Engineering Chemistry Research, 1994, 33, 125-136.	3.7	53
226	Liquid phase oxidation of α-pinene. Influence of sodium hydroxide as additive. Journal of Chemical Technology and Biotechnology, 1994, 61, 359-365.	3.2	5
227	Liquid phase oxidation of α-pinene initiated by ozone. 1. Conversion of α-pinene and formation of its hydroperoxide. Chemical Engineering and Technology, 1993, 16, 68-74.	1.5	9
228	Oxidation by ozone and chlorine dioxide of two distillery wastewater contaminants: gallic acid and epicatechin. Water Research, 1993, 27, 1023-1032.	11.3	50
229	Oxidation of atrazine in water by ultraviolet radiation combined with hydrogen peroxide. Water Research, 1993, 27, 1013-1021.	11.3	146
230	Direct, radical and competitive reactions in the ozonation of water micropollutants. Journal of Environmental Science and Health Part A: Environmental Science and Engineering, 1993, 28, 1947-1976.	0.1	9
231	Kinetic Study of the Ozonation of Some Industrial Wastewaters. Ozone: Science and Engineering, 1992, 14, 303-327.	2.5	15
232	Study of ozonation of organics in water using unsteady state and turbulent absorption theories. Journal of Environmental Science and Health Part A: Environmental Science and Engineering, 1992, 27, 1433-1452.	0.1	2
233	Degradation kinetics of p-nitrophenol ozonation in water. Water Research, 1992, 26, 9-17.	11.3	77
234	Chemical Models of Advanced Oxidation Processes. Water Quality Research Journal of Canada, 1992,	2.7	68

³⁴ 27, 23-42.

#	Article	IF	CITATIONS
235	Absorption kinetics of ozone in aqueous Oâ€cresol solutions. Canadian Journal of Chemical Engineering, 1992, 70, 141-147.	1.7	19
236	Adsorption ofp-nitrophenol from aqueous solution on activated carbon: Influence of pH and preozonization. Chemical Engineering and Technology, 1992, 15, 124-130.	1.5	4
237	Liquid-phase ozonation of cyclohexanol catalyzed by cobalt(III) acetylacetonate. Industrial & Engineering Chemistry Research, 1991, 30, 617-623.	3.7	7
238	Kinetic Regime Changes in the Ozonation of 1,3-Cyclohexanedione in Aqueous Solutions. Ozone: Science and Engineering, 1991, 13, 397-419.	2.5	7
239	Ozonation of aqueous solutions of resorcinol and phloroglucinol. 3. Instantaneous kinetic regime. Industrial & Engineering Chemistry Research, 1991, 30, 2518-2522.	3.7	7
240	Ozonation of aqueous solutions of resorcinol and phloroglucinol. 2. Kinetic study. Industrial & Engineering Chemistry Research, 1991, 30, 222-227.	3.7	21
241	The Use of Surface Renewal and Eddy Diffusivity Theories in the Ozonation of a THM Precursor: 1,3-Cyclohexanedione. Ozone: Science and Engineering, 1991, 13, 421-436.	2.5	3
242	THE USE OF OZONATION TO REDUCE THE POTENTIAL FOR FORMING TRIHALOMETHANE COMPOUNDS IN CHLORINATING RESORCINOL, PHLOROGLUCINOL AND 1,3 CYCLOHEXANEDIONE. Chemical Engineering Communications, 1990, 96, 321-339.	2.6	5
243	Application of Gas Absorption Theories to o-Cresol Ozonation in Water. Ozone: Science and Engineering, 1990, 12, 341-353.	2.5	7
244	Ozonation of aqueous solutions of resorcinol and phloroglucinol. 1. Stoichiometry and absorption kinetic regime. Industrial & amp; Engineering Chemistry Research, 1990, 29, 2358-2367.	3.7	44
245	Ozonation of o-cresol in aqueous solutions. Water Research, 1990, 24, 1309-1316.	11.3	36
246	Effect of high salt concentrations on ozone decomposition in water. Journal of Environmental Science and Health Part A, Environmental Science and Engineering, 1989, 24, 823-842.	0.1	21
247	Henry's law constant for the ozone-water system. Water Research, 1989, 23, 1239-1246.	11.3	241
248	Effect of preozonation on the organic halide formation potential of an aquatic fulvic acid. Industrial & Engineering Chemistry Research, 1989, 28, 1082-1089.	3.7	17
249	Azo Dye Ozonation Film Theory Utilization for Kinetic Studies. Ozone: Science and Engineering, 1989, 11, 391-409.	2.5	16
250	Ozone decomposition in water: kinetic study. Industrial & Engineering Chemistry Research, 1987, 26, 39-43.	3.7	220
251	Liquid-phase oxidation of cumene initiated by ozone in the presence of sodium cyclohexanecarboxylate. Industrial & Engineering Chemistry Product Research and Development, 1985, 24, 650-654.	0.5	3