Rupert W Overall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4254742/publications.pdf

Version: 2024-02-01

41 papers

2,027 citations

279798 23 h-index 39 g-index

50 all docs 50 docs citations

50 times ranked

3268 citing authors

#	Article	IF	CITATIONS
1	Selenium mediates exercise-induced adult neurogenesis and reverses learning deficits induced by hippocampal injury and aging. Cell Metabolism, 2022, 34, 408-423.e8.	16.2	58
2	Systems genetics in the rat HXB/BXH family identifies Tti2 as a pleiotropic quantitative trait gene for adult hippocampal neurogenesis and serum glucose. PLoS Genetics, 2022, 18, e1009638.	3.5	3
3	ROS Dynamics Delineate Functional States of Hippocampal Neural Stem Cells and Link to Their Activity-Dependent Exit from Quiescence. Cell Stem Cell, 2021, 28, 300-314.e6.	11.1	55
4	AsthmaMap: An interactive knowledge repository for mechanisms of asthma. Journal of Allergy and Clinical Immunology, 2021, 147, 853-856.	2.9	6
5	Apple Peel and Flesh Contain Pro-neurogenic Compounds. Stem Cell Reports, 2021, 16, 548-565.	4.8	16
6	Environmental enrichment preserves a young DNA methylation landscape in the aged mouse hippocampus. Nature Communications, 2021, 12, 3892.	12.8	29
7	<i>De novo</i> DNA methylation controls neuronal maturation during adult hippocampal neurogenesis. EMBO Journal, 2021, 40, e107100.	7.8	24
8	COVID19 Disease Map, a computational knowledge repository of virus–host interaction mechanisms. Molecular Systems Biology, 2021, 17, e10387.	7.2	53
9	Early-life environmental enrichment generates persistent individualized behavior in mice. Science Advances, 2020, 6, eabb1478.	10.3	43
10	FASN-Dependent Lipid Metabolism Links Neurogenic Stem/Progenitor Cell Activity to Learning and Memory Deficits. Cell Stem Cell, 2020, 27, 98-109.e11.	11.1	62
11	The systemic exercise-released chemokine lymphotactin/XCL1 modulates in vitro adult hippocampal precursor cell proliferation and neuronal differentiation. Scientific Reports, 2019, 9, 11831.	3.3	6
12	Exercise-Induced Activated Platelets Increase Adult Hippocampal Precursor Proliferation and Promote Neuronal Differentiation. Stem Cell Reports, 2019, 12, 667-679.	4.8	68
13	Workshop Report: Systems Genetics of Neurodegenerative Disease, a Summer School in Systems Medicine, 25th Augustâ^1st September 2017. Frontiers in Genetics, 2019, 10, 29.	2.3	0
14	The Small World of Adult Hippocampal Neurogenesis. Frontiers in Neuroscience, 2018, 12, 641.	2.8	7
15	Integrating Multidimensional Data Sources to Identify Genes Regulating Complex Phenotypes. Methods in Molecular Biology, 2017, 1488, 239-250.	0.9	0
16	Different Mechanisms Must Be Considered to Explain the Increase in Hippocampal Neural Precursor Cell Proliferation by Physical Activity. Frontiers in Neuroscience, 2016, 10, 362.	2.8	36
17	Systems Genetics Analysis of a Recombinant Inbred Mouse Cell Culture Panel Reveals Wnt Pathway Member Lrp6 as a Regulator of Adult Hippocampal Precursor Cell Proliferation. Stem Cells, 2016, 34, 674-684.	3.2	7
18	Retinal Organoids from Pluripotent Stem Cells Efficiently Recapitulate Retinogenesis. Stem Cell Reports, 2016, 6, 525-538.	4.8	236

#	Article	IF	Citations
19	Lysophosphatidic Acid Receptor Is a Functional Marker of Adult Hippocampal Precursor Cells. Stem Cell Reports, 2016, 6, 552-565.	4.8	61
20	Systems genetics identifies $Hp1bp3$ as a novel modulator of cognitive aging. Neurobiology of Aging, 2016, 46, 58-67.	3.1	34
21	Workshop report: INCF short course on neuroinformatics, neurogenomics, and brain disease, 14ââ,¬â€œ21 September 2013. Frontiers in Neuroscience, 2015, 9, 31.	2.8	2
22	Collaborative mining of public data resources in neuroinformatics. Frontiers in Neuroscience, 2015, 9, 90.	2.8	6
23	Acute effects of wheel running on adult hippocampal precursor cells in mice are not caused by changes in cell cycle length or S phase length. Frontiers in Neuroscience, 2014, 8, 314.	2.8	31
24	Transcript co-variance with Nestin in two mouse genetic reference populations identifies Lef1 as a novel candidate regulator of neural precursor cell proliferation in the adult hippocampus. Frontiers in Neuroscience, 2014, 8, 418.	2.8	11
25	Whole-Genome Expression Analysis of Human Mesenchymal Stromal Cells Exposed to Ultrasmooth Tantalum vs. Titanium Oxide Surfaces. Cellular and Molecular Bioengineering, 2013, 6, 199-209.	2.1	4
26	The \hat{l}_{\pm} Crystallin Domain of Small Heat Shock Protein b8 (Hspb8) Acts as Survival and Differentiation Factor in Adult Hippocampal Neurogenesis. Journal of Neuroscience, 2013, 33, 5785-5796.	3.6	27
27	Silencing of the <i>WFS1</i> gene in HEK cells induces pathways related to neurodegeneration and mitochondrial damage. Physiological Genomics, 2013, 45, 182-190.	2.3	21
28	Delayed and Transient Increase of Adult Hippocampal Neurogenesis by Physical Exercise in DBA/2 Mice. PLoS ONE, 2013, 8, e83797.	2.5	32
29	Prolactin Stimulates Precursor Cells in the Adult Mouse Hippocampus. PLoS ONE, 2012, 7, e44371.	2.5	68
30	The Mammalian Adult Neurogenesis Gene Ontology (MANGO) Provides a Structural Framework for Published Information on Genes Regulating Adult Hippocampal Neurogenesis. PLoS ONE, 2012, 7, e48527.	2.5	41
31	Adult hippocampal neurogenesis and plasticity in the infrapyramidal bundle of the mossy fiber projection: I. Co-regulation by activity. Frontiers in Neuroscience, 2011, 5, 107.	2.8	48
32	Folate deficiency increases mtDNA and D-1 mtDNA deletion in aged brain of mice lacking uracil-DNA glycosylase. Experimental Neurology, 2011, 228, 253-258.	4.1	16
33	Adult hippocampal neurogenesis and plasticity in the infrapyramidal bundle of the mossy fiber projection: II. Genetic covariation and identification of Nos1 as linking candidate gene. Frontiers in Neuroscience, 2011, 5, 106.	2.8	14
34	Integrative Analysis of Low- and High-Resolution eQTL. PLoS ONE, 2010, 5, e13920.	2.5	12
35	Genetics of the hippocampal transcriptome in mouse: a systematic survey and online neurogenomics resource. Frontiers in Neuroscience, 2009, 3, 55.	2.8	84
36	Cdk5 Regulates Accurate Maturation of Newborn Granule Cells in the Adult Hippocampus. PLoS Biology, 2008, 6, e272.	5.6	112

#	Article	IF	CITATIONS
37	Towards a "free radical theory of graying― melanocyte apoptosis in the aging human hair follicle is an indicator of oxidative stress induced tissue damage. FASEB Journal, 2006, 20, 1567-1569.	0.5	226
38	p75 Neurotrophin Receptor-Mediated Signaling Promotes Human Hair Follicle Regression (Catagen). American Journal of Pathology, 2006, 168, 221-234.	3.8	64
39	Cognitive and Physical Activity Differently Modulate Disease Progression in the Amyloid Precursor Protein (APP)-23 Model of Alzheimer's Disease. Biological Psychiatry, 2006, 60, 1314-1323.	1.3	271
40	Control of Human Hair Growth by Neurotrophins: Brain-Derived Neurotrophic Factor Inhibits Hair Shaft Elongation, Induces Catagen, and Stimulates Follicular Transforming Growth Factor \hat{l}^2 2 Expression. Journal of Investigative Dermatology, 2005, 124, 675-685.	0.7	59
41	Dystrophin in Adult Zebrafish Muscle. Biochemical and Biophysical Research Communications, 2001, 286, 478-483.	2.1	38