Janice Holton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4254707/publications.pdf Version: 2024-02-01

		5896	9102
307	24,831	81	144
papers	citations	h-index	g-index
324	324	324	22636
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Lewy bodies in grafted neurons in subjects with Parkinson's disease suggest host-to-graft disease propagation. Nature Medicine, 2008, 14, 501-503.	30.7	1,595
2	Characteristics of two distinct clinical phenotypes in pathologically proven progressive supranuclear palsy: Richardson's syndrome and PSP-parkinsonism. Brain, 2005, 128, 1247-1258.	7.6	743
3	Clucocerebrosidase mutations in clinical and pathologically proven Parkinson's disease. Brain, 2009, 132, 1783-1794.	7.6	612
4	Lewy- and Alzheimer-type pathologies in Parkinson's disease dementia: which is more important?. Brain, 2011, 134, 1493-1505.	7.6	497
5	The spectrum of pathological involvement of the striatonigral and olivopontocerebellar systems in multiple system atrophy: clinicopathological correlations. Brain, 2004, 127, 2657-2671.	7.6	493
6	Does corticobasal degeneration exist? A clinicopathological re-evaluation. Brain, 2010, 133, 2045-2057.	7.6	414
7	A common LRRK2 mutation in idiopathic Parkinson's disease. Lancet, The, 2005, 365, 415-416.	13.7	391
8	A clinico-pathological study of subtypes in Parkinson's disease. Brain, 2009, 132, 2947-2957.	7.6	385
9	α-Synucleinopathy associated with G51D SNCA mutation: a link between Parkinson's disease and multiple system atrophy?. Acta Neuropathologica, 2013, 125, 753-769.	7.7	369
10	Pathological tau burden and distribution distinguishes progressive supranuclear palsy-parkinsonism from Richardson's syndrome. Brain, 2007, 130, 1566-1576.	7.6	364
11	Neuropathology underlying clinical variability in patients with synucleinopathies. Acta Neuropathologica, 2011, 122, 187-204.	7.7	357
12	Clinical outcomes of progressive supranuclear palsy and multiple system atrophy. Brain, 2008, 131, 1362-1372.	7.6	355
13	Relationships between age and late progression of Parkinson's disease: a clinico-pathological study. Brain, 2010, 133, 1755-1762.	7.6	349
14	Loss of VPS13C Function in Autosomal-Recessive Parkinsonism Causes Mitochondrial Dysfunction and Increases PINK1/Parkin-Dependent Mitophagy. American Journal of Human Genetics, 2016, 98, 500-513.	6.2	333
15	Mutations in the gene LRRK2 encoding dardarin (PARK8) cause familial Parkinson's disease: clinical, pathological, olfactory and functional imaging and genetic data. Brain, 2005, 128, 2786-2796.	7.6	315
16	Clinical and neuroanatomical signatures of tissue pathology in frontotemporal lobar degeneration. Brain, 2011, 134, 2565-2581.	7.6	306
17	Research in motion: the enigma of Parkinson's disease pathology spread. Nature Reviews Neuroscience, 2008, 9, 741-745.	10.2	296
18	PINK1 protein in normal human brain and Parkinson's disease. Brain, 2006, 129, 1720-1731.	7.6	291

#	Article	IF	CITATIONS
19	A decamer duplication in the 3′ region of the <i>BRI</i> gene originates an amyloid peptide that is associated with dementia in a Danish kindred. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 4920-4925.	7.1	289
20	C9orf72 expansions in frontotemporal dementia and amyotrophic lateral sclerosis. Lancet Neurology, The, 2015, 14, 291-301.	10.2	270
21	<i>SNCA</i> variants are associated with increased risk for multiple system atrophy. Annals of Neurology, 2009, 65, 610-614.	5.3	257
22	Genetics and molecular pathogenesis of sporadic and hereditary cerebral amyloid angiopathies. Acta Neuropathologica, 2009, 118, 115-130.	7.7	255
23	A Two-Stage Meta-Analysis Identifies Several New Loci for Parkinson's Disease. PLoS Genetics, 2011, 7, e1002142.	3.5	247
24	Cerebral Amyloid Angiopathies: A Pathologic, Biochemical, and Genetic View. Journal of Neuropathology and Experimental Neurology, 2003, 62, 885-898.	1.7	245
25	A distinct clinical, neuropsychological and radiological phenotype is associated with progranulin gene mutations in a large UK series. Brain, 2008, 131, 706-720.	7.6	222
26	FUS pathology defines the majority of tau- and TDP-43-negative frontotemporal lobar degeneration. Acta Neuropathologica, 2010, 120, 33-41.	7.7	222
27	The neuropathology, pathophysiology and genetics of multiple system atrophy. Neuropathology and Applied Neurobiology, 2012, 38, 4-24.	3.2	218
28	Pure akinesia with gait freezing: A third clinical phenotype of progressive supranuclear palsy. Movement Disorders, 2007, 22, 2235-2241.	3.9	216
29	Prognosis and Neuropathologic Correlation of Clinical Subtypes of Parkinson Disease. JAMA Neurology, 2019, 76, 470.	9.0	205
30	Investigating the genetic architecture of dementia with Lewy bodies: a two-stage genome-wide association study. Lancet Neurology, The, 2018, 17, 64-74.	10.2	195
31	Pathological inclusion bodies in tauopathies contain distinct complements of tau with three or four microtubule-binding repeat domains as demonstrated by new specific monoclonal antibodies. Neuropathology and Applied Neurobiology, 2003, 29, 288-302.	3.2	194
32	The novel Parkinson's disease linked mutation G51D attenuates in vitro aggregation and membrane binding of Â-synuclein, and enhances its secretion and nuclear localization in cells. Human Molecular Genetics, 2014, 23, 4491-4509.	2.9	194
33	Cognitive impairment in multiple system atrophy: A position statement by the neuropsychology task force of the MDS multiple system atrophy (MODIMSA) study group. Movement Disorders, 2014, 29, 857-867.	3.9	193
34	Mixed pathologies including chronic traumatic encephalopathy account for dementia in retired association football (soccer) players. Acta Neuropathologica, 2017, 133, 337-352.	7.7	193
35	Mutations in TTBK2, encoding a kinase implicated in tau phosphorylation, segregate with spinocerebellar ataxia type 11. Nature Genetics, 2007, 39, 1434-1436.	21.4	185
36	Cloning and sequence analysis of desmosomal glycoproteins 2 and 3 (desmocollins): cadherin-like desmosomal adhesion molecules with heterogeneous cytoplasmic domains Journal of Cell Biology, 1991, 113, 381-391.	5.2	184

#	Article	IF	CITATIONS
37	Widespread Lewy body and tau accumulation in childhood and adult onset dystonia-parkinsonism cases with PLA2G6 mutations. Neurobiology of Aging, 2012, 33, 814-823.	3.1	184
38	Neurofilament inclusion body disease: a new proteinopathy?. Brain, 2003, 126, 2291-2303.	7.6	176
39	Dysregulation of glucose metabolism is an early event in sporadic Parkinson's disease. Neurobiology of Aging, 2014, 35, 1111-1115.	3.1	174
40	Degeneration in Different Parkinsonian Syndromes Relates to Astrocyte Type and Astrocyte Protein Expression. Journal of Neuropathology and Experimental Neurology, 2009, 68, 1073-1083.	1.7	173
41	Neuropathological criteria of anti-IgLON5-related tauopathy. Acta Neuropathologica, 2016, 132, 531-543.	7.7	173
42	Sporadic and Familial Cerebral Amyloid Angiopathies. Brain Pathology, 2002, 12, 343-357.	4.1	172
43	Patterns of levodopa response in Parkinson's disease: a clinico-pathological study. Brain, 2007, 130, 2123-2128.	7.6	172
44	Globular glial tauopathies (GGT): consensus recommendations. Acta Neuropathologica, 2013, 126, 537-544.	7.7	168
45	Multiple system atrophy–parkinsonism with slow progression and prolonged survival: A diagnostic catch. Movement Disorders, 2012, 27, 1186-1190.	3.9	164
46	Conventional magnetic resonance imaging in confirmed progressive supranuclear palsy and multiple system atrophy. Movement Disorders, 2012, 27, 1754-1762.	3.9	163
47	Clinical phenotype and genetic associations in autosomal dominant familial Alzheimer's disease: a case series. Lancet Neurology, The, 2016, 15, 1326-1335.	10.2	163
48	Association of Autonomic Dysfunction With Disease Progression and Survival in Parkinson Disease. JAMA Neurology, 2017, 74, 970.	9.0	162
49	Adenosine monophosphate-activated protein kinase disease mimicks hypertrophic cardiomyopathy and Wolff-Parkinson-White syndrome. Journal of the American College of Cardiology, 2005, 45, 922-930.	2.8	155
50	The midbrain to pons ratio. Neurology, 2013, 80, 1856-1861.	1.1	153
51	A multidisciplinary team approach to skull base chordomas. Journal of Neurosurgery, 2001, 95, 175-183.	1.6	151
52	Gene expression in Huntington's disease skeletal muscle: a potential biomarker. Human Molecular Genetics, 2005, 14, 1863-1876.	2.9	150
53	Alphaâ€synuclein mRNA expression in oligodendrocytes in MSA. Glia, 2014, 62, 964-970.	4.9	149
54	Altered cleavage and localization of PINK1 to aggresomes in the presence of proteasomal stress. Journal of Neurochemistry, 2006, 98, 156-169.	3.9	146

#	Article	IF	CITATIONS
55	Cortical α-synuclein load is associated with amyloid-β plaque burden in a subset of Parkinson's disease patients. Acta Neuropathologica, 2008, 115, 417-425.	7.7	146
56	Frontotemporal lobar degeneration and ubiquitin immunohistochemistry. Neuropathology and Applied Neurobiology, 2004, 30, 369-373.	3.2	145
57	A genome-wide association study in multiple system atrophy. Neurology, 2016, 87, 1591-1598.	1.1	139
58	Variant Alzheimer's disease with spastic paraparesis and cotton wool plaques is caused by PS-1 mutations that lead to exceptionally high amyloid-? concentrations. Annals of Neurology, 2000, 48, 806-808.	5.3	135
59	Magnetic Resonance Imaging Signatures of Tissue Pathology in Frontotemporal Dementia. Archives of Neurology, 2005, 62, 1402.	4.5	132
60	International consensus on a proposed score system for muscle biopsy evaluation in patients with juvenile dermatomyositis: A tool for potential use in clinical trials. Arthritis and Rheumatism, 2007, 57, 1192-1201.	6.7	132
61	Regional Distribution of Amyloid-Bri Deposition and Its Association with Neurofibrillary Degeneration in Familial British Dementia. American Journal of Pathology, 2001, 158, 515-526.	3.8	127
62	Brain biopsy in dementia. Brain, 2005, 128, 2016-2025.	7.6	127
63	UCHL-1is not a Parkinson's disease susceptibility gene. Annals of Neurology, 2006, 59, 627-633.	5.3	123
64	Development of phospho-specific Rab protein antibodies to monitor <i>in vivo</i> activity of the LRRK2 Parkinson's disease kinase. Biochemical Journal, 2018, 475, 1-22.	3.7	123
65	A pathway-based analysis provides additional support for an immune-related genetic susceptibility to Parkinson's disease. Human Molecular Genetics, 2013, 22, 1039-1049.	2.9	122
66	Improving diagnostic accuracy of multiple system atrophy: a clinicopathological study. Brain, 2019, 142, 2813-2827.	7.6	121
67	Parkin Disease. JAMA Neurology, 2013, 70, 571.	9.0	119
68	Familial Danish Dementia: A Novel Form of Cerebral Amyloidosis Associated with Deposition of Both Amyloid-Dan and Amyloid-Beta. Journal of Neuropathology and Experimental Neurology, 2002, 61, 254-267.	1.7	116
69	A Novel Prion Disease Associated with Diarrhea and Autonomic Neuropathy. New England Journal of Medicine, 2013, 369, 1904-1914.	27.0	113
70	Regional differences in the severity of Lewy body pathology across the olfactory cortex. Neuroscience Letters, 2009, 453, 77-80.	2.1	110
71	Astrogliopathy predominates the earliest stage of corticobasal degeneration pathology. Brain, 2016, 139, 3237-3252.	7.6	107
72	Disentangling the Relationship between Lewy Bodies and Nigral Neuronal Loss in Parkinson's Disease. Journal of Parkinson's Disease, 2011, 1, 277-286.	2.8	106

#	Article	IF	CITATIONS
73	Rhabdomyolysis: a genetic perspective. Orphanet Journal of Rare Diseases, 2015, 10, 51.	2.7	101
74	A multidisciplinary team approach to skull base chondrosarcomas. Journal of Neurosurgery, 2001, 95, 184-189.	1.6	100
75	Targeting protein homeostasis in sporadic inclusion body myositis. Science Translational Medicine, 2016, 8, 331ra41.	12.4	99
76	Genetic dysfunction of <i>MT-ATP6</i> causes axonal Charcot-Marie-Tooth disease. Neurology, 2012, 79, 1145-1154.	1.1	97
77	Diagnosis Across the Spectrum of Progressive Supranuclear Palsy and Corticobasal Syndrome. JAMA Neurology, 2020, 77, 377.	9.0	94
78	Histological evidence of chronic traumatic encephalopathy in a large series of neurodegenerative diseases. Acta Neuropathologica, 2015, 130, 891-893.	7.7	92
79	An immunohistochemical study of cases of sporadic and inherited frontotemporal lobar degeneration using 3R- and 4R-specific tau monoclonal antibodies. Acta Neuropathologica, 2006, 111, 329-340.	7.7	91
80	Distinct clinical and neuropathological features of G51D SNCA mutation cases compared with SNCA duplication and H50Q mutation. Molecular Neurodegeneration, 2015, 10, 41.	10.8	90
81	Conspicuous involvement of desmin tail mutations in diverse cardiac and skeletal myopathies. Human Mutation, 2007, 28, 374-386.	2.5	85
82	The use of nerve and muscle biopsy in the diagnosis of vasculitis: a 5 year retrospective study. Journal of Neurology, Neurosurgery and Psychiatry, 2008, 79, 1376-1381.	1.9	85
83	The Significance of α-Synuclein, Amyloid-β and Tau Pathologies in Parkinson's Disease Progression and Related Dementia. Neurodegenerative Diseases, 2014, 13, 154-156.	1.4	83
84	Muscle Biopsy Findings in Combination With Myositisâ€ 5 pecific Autoantibodies Aid Prediction of Outcomes in Juvenile Dermatomyositis. Arthritis and Rheumatology, 2016, 68, 2806-2816.	5.6	83
85	`Gangliocytomas' of the Pituitary. American Journal of Surgical Pathology, 2000, 24, 607-613.	3.7	81
86	Patients with a novel neurofilamentopathy: dementia with neurofilament inclusions. Neuroscience Letters, 2003, 341, 177-180.	2.1	81
87	High resolution MR anatomy of the subthalamic nucleus: Imaging at 9.4T with histological validation. NeuroImage, 2012, 59, 2035-2044.	4.2	81
88	A retrospective cohort study identifying the principal pathological features useful in the diagnosis of inclusion body myositis. BMJ Open, 2014, 4, e004552.	1.9	80
89	A Pathogenic Presenilin-1 Deletion Causes Abberrant Aβ42 Production in the Absence of Congophilic Amyloid Plaques. Journal of Biological Chemistry, 2001, 276, 7233-7239.	3.4	76
90	A comparative clinical, pathological, biochemical and genetic study of fused in sarcoma proteinopathies. Brain, 2011, 134, 2548-2564.	7.6	76

#	Article	IF	CITATIONS
91	Evaluating the relationship between amyloid-β and α-synuclein phosphorylated at Ser129 in dementia with Lewy bodies and Parkinson's disease. Alzheimer's Research and Therapy, 2014, 6, 77.	6.2	74
92	Characteristics of progressive supranuclear palsy presenting with corticobasal syndrome: a cortical variant. Neuropathology and Applied Neurobiology, 2014, 40, 149-163.	3.2	74
93	Systemic Amyloid Deposits in Familial British Dementia. Journal of Biological Chemistry, 2001, 276, 43909-43914.	3.4	73
94	MHC Class I overexpression on muscles in early juvenile dermatomyositis. Journal of Rheumatology, 2004, 31, 605-9.	2.0	72
95	The bovine desmocollin family: a new gene and expression patterns reflecting epithelial cell proliferation and differentiation Journal of Cell Biology, 1994, 126, 507-518.	5.2	71
96	Identification and Quantification of Oligodendrocyte Precursor Cells in Multiple System Atrophy, Progressive Supranuclear Palsy and <scp>P</scp> arkinson's Disease. Brain Pathology, 2013, 23, 263-273.	4.1	69
97	Neuropathological findings in benign tremulous Parkinsonism. Movement Disorders, 2013, 28, 145-152.	3.9	68
98	Globular glial tauopathies (GGT) presenting with motor neuron disease or frontotemporal dementia: an emerging group of 4-repeat tauopathies. Acta Neuropathologica, 2011, 122, 415-428.	7.7	67
99	The Effects of the Tremorgenic Mycotoxin Penitrem A on the Rat Cerebellum. Veterinary Pathology, 1998, 35, 53-63.	1.7	64
100	Brain biopsy in dementia: clinical indications and diagnostic approach. Acta Neuropathologica, 2010, 120, 327-341.	7.7	64
101	Somatic copy number gains of α-synuclein (SNCA) in Parkinson's disease and multiple system atrophy brains. Brain, 2018, 141, 2419-2431.	7.6	63
102	Down-regulation of the dopamine receptor D2 in mice lacking ataxin 1. Human Molecular Genetics, 2007, 16, 2122-2134.	2.9	61
103	Skull base chordomas: correlation of tumour doubling time with age, mitosis and Ki67 proliferation index. Neuropathology and Applied Neurobiology, 2000, 26, 497-503.	3.2	60
104	The MAPT p.A152T variant is a risk factor associated with tauopathies with atypical clinical and neuropathological features. Neurobiology of Aging, 2012, 33, 2231.e7-2231.e14.	3.1	60
105	A 6.4 Mb Duplication of the α-Synuclein Locus Causing Frontotemporal Dementia and Parkinsonism. JAMA Neurology, 2014, 71, 1162.	9.0	60
106	Complement Activation in Chromosome 13 Dementias. Journal of Biological Chemistry, 2002, 277, 49782-49790.	3.4	59
107	Familial Danish Dementia. Journal of Biological Chemistry, 2005, 280, 36883-36894.	3.4	59
108	Does levodopa accelerate the pathologic process in Parkinson disease brain?. Neurology, 2011, 77, 1420-1426.	1.1	59

7

#	Article	IF	CITATIONS
109	Proteomics of rimmed vacuoles define new risk allele in inclusion body myositis. Annals of Neurology, 2017, 81, 227-239.	5.3	59
110	Transportin1: a marker of FTLD-FUS. Acta Neuropathologica, 2011, 122, 591-600.	7.7	58
111	Cytoskeletal pathology in familial cerebral amyloid angiopathy (British type) with non-neuritic amyloid plaque formation. Acta Neuropathologica, 1999, 97, 170-176.	7.7	56
112	Validation of a score tool for measurement of histological severity in juvenile dermatomyositis and association with clinical severity of disease. Annals of the Rheumatic Diseases, 2015, 74, 204-210.	0.9	56
113	The phenomenon of disproportionate antecollis in Parkinson's disease and multiple system atrophy. Movement Disorders, 2007, 22, 2325-2331.	3.9	55
114	Clinical features of the myasthenic syndrome arising from mutations in GMPPB. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 802-809.	1.9	55
115	Frontotemporal lobar degeneration with ubiquitin-only-immunoreactive neuronal changes: broadening the clinical picture to include progressive supranuclear palsy. Brain, 2004, 127, 2441-2451.	7.6	54
116	Neuropathy target esterase: Immunolocalization to neuronal cell bodies and axons. Neuroscience, 1998, 83, 295-302.	2.3	53
117	Cryptic Amyloidogenic Elements in the 3′ UTRs of Neurofilament Genes Trigger Axonal Neuropathy. American Journal of Human Genetics, 2016, 98, 597-614.	6.2	53
118	Parietal Lobe Deficits in Frontotemporal Lobar Degeneration Caused by a Mutation in the Progranulin Gene. Archives of Neurology, 2008, 65, 506.	4.5	52
119	Cerebral amyloidosis: amyloid subunits, mutants and phenotypes. Cellular and Molecular Life Sciences, 2010, 67, 581-600.	5.4	52
120	Kearns-Sayre syndrome caused by defective R1/p53R2 assembly. Journal of Medical Genetics, 2011, 48, 610-617.	3.2	49
121	Primum non nocere: a call for balance when reporting on CTE. Lancet Neurology, The, 2019, 18, 231-233.	10.2	48
122	Coenzyme Q10 Levels Are Decreased in the Cerebellum of Multiple-System Atrophy Patients. PLoS ONE, 2016, 11, e0149557.	2.5	48
123	Neuronal intranuclear inclusion disease: Report on a case originally diagnosed as dopa-responsive dystonia with Lewy bodies. Movement Disorders, 2005, 20, 1345-1349.	3.9	46
124	<i>LRRK2</i> exonic variants and risk of multiple system atrophy. Neurology, 2014, 83, 2256-2261.	1.1	46
125	Microdysgenesis with abnormal cortical myelinated fibres in temporal lobe epilepsy: a histopathological study with calbindin D-28-K immunohistochemistry. Neuropathology and Applied Neurobiology, 2000, 26, 251-257.	3.2	45
126	The Â-synuclein gene in multiple system atrophy. Journal of Neurology, Neurosurgery and Psychiatry, 2006, 77, 464-467.	1.9	45

#	Article	IF	CITATIONS
127	Minimal change multiple system atrophy: An aggressive variant?. Movement Disorders, 2015, 30, 960-967.	3.9	45
128	LRRK2 expression in idiopathic and G2019S positive Parkinson's disease subjects: a morphological and quantitative study. Neuropathology and Applied Neurobiology, 2011, 37, 777-790.	3.2	44
129	LATE to the PART-y. Brain, 2019, 142, e47-e47.	7.6	44
130	LRRK2 and parkin immunoreactivity in multiple system atrophy inclusions. Acta Neuropathologica, 2008, 116, 639-646.	7.7	43
131	Hyposmia in progressive supranuclear palsy. Movement Disorders, 2010, 25, 570-577.	3.9	43
132	Pantothenate kinaseâ€associated neurodegeneration is not a synucleinopathy. Neuropathology and Applied Neurobiology, 2013, 39, 121-131.	3.2	43
133	Normal dopamine transporter single photonâ€emission CT scan in corticobasal degeneration. Movement Disorders, 2008, 23, 2424-2426.	3.9	42
134	Neuropathology of primary adult-onset dystonia. Neurology, 2008, 70, 695-699.	1.1	42
135	White matter DNA methylation profiling reveals deregulation of HIP1, LMAN2, MOBP, and other loci in multiple system atrophy. Acta Neuropathologica, 2020, 139, 135-156.	7.7	42
136	Variant Alzheimer's disease with spastic paraparesis and cotton wool plaques is caused by PS-1 mutations that lead to exceptionally high amyloid-beta concentrations. Annals of Neurology, 2000, 48, 806-8.	5.3	42
137	Is it really myositis? A consideration of the differential diagnosis. Current Opinion in Rheumatology, 2004, 16, 684-691.	4.3	41
138	TDP-43 pathology in a patient carrying G2019S LRRK2Âmutation and a novel p.Q124E MAPT. Neurobiology of Aging, 2013, 34, 2889.e5-2889.e9.	3.1	41
139	Cerebral mitochondrial electron transport chain dysfunction in multiple system atrophy and Parkinson's disease. Scientific Reports, 2019, 9, 6559.	3.3	41
140	Genetic Alterations of the BRI2 gene: Familial British and Danish Dementias. Brain Pathology, 2006, 16, 71-79.	4.1	40
141	Glucocerebrosidase mutations do not cause increased Lewy body pathology in Parkinson's disease. Molecular Genetics and Metabolism, 2011, 103, 410-412.	1.1	40
142	Rare variants in SQSTM1 and VCP genes and risk of sporadic inclusion body myositis. Neurobiology of Aging, 2016, 47, 218.e1-218.e9.	3.1	40
143	Pathological correlates of white matter hyperintensities in a case of progranulin mutation associated frontotemporal dementia. Neurocase, 2018, 24, 166-174.	0.6	40
144	The analysis of C9orf72 repeat expansions in a large series of clinically and pathologically diagnosed cases with atypical parkinsonism. Neurobiology of Aging, 2015, 36, 1221.e1-1221.e6.	3.1	39

#	Article	IF	CITATIONS
145	LRRK2 levels and phosphorylation in Parkinson's disease brain and cases with restricted Lewy bodies. Movement Disorders, 2017, 32, 423-432.	3.9	39
146	Atypical periodic paralysis and myalgia. Neurology, 2018, 90, e412-e418.	1.1	39
147	Selective damage to the cerebellar vermis in chronic alcoholism: a contribution from neurotoxicology to an old problem of selective vulnerability. Neuropathology and Applied Neurobiology, 1997, 23, 355-363.	3.2	38
148	The effect of drug treatment on neurogenesis in Parkinson's disease. Movement Disorders, 2011, 26, 45-50.	3.9	38
149	Neuropathological features of multiple system atrophy with cognitive impairment. Movement Disorders, 2014, 29, 884-888.	3.9	38
150	CAV3 mutations causing exercise intolerance, myalgia and rhabdomyolysis: Expanding the phenotypic spectrum of caveolinopathies. Neuromuscular Disorders, 2016, 26, 504-510.	0.6	38
151	Neuropathology of Beta-propeller protein associated neurodegeneration (BPAN): a new tauopathy. Acta Neuropathologica Communications, 2015, 3, 39.	5.2	37
152	Variation at the <i>TRIM11</i> locus modifies progressive supranuclear palsy phenotype. Annals of Neurology, 2018, 84, 485-496.	5.3	37
153	Characterisation of a novel NR4A2 mutation in Parkinson's disease brain. Neuroscience Letters, 2009, 457, 75-79.	2.1	36
154	Widespread RNA metabolism impairment in sporadic inclusion body myositis TDP43-proteinopathy. Neurobiology of Aging, 2014, 35, 1491-1498.	3.1	36
155	A Clinical, Neuropathological and Genetic Study of Homozygous A467T POLG-Related Mitochondrial Disease. PLoS ONE, 2016, 11, e0145500.	2.5	36
156	Reduced LRRK2 in association with retromer dysfunction in post-mortem brain tissue from LRRK2 mutation carriers. Brain, 2018, 141, 486-495.	7.6	36
157	Histological heterogeneity in a large clinical cohort of juvenile idiopathic inflammatory myopathy: analysis by myositis autoantibody and pathological features. Neuropathology and Applied Neurobiology, 2019, 45, 495-512.	3.2	36
158	Review: Genetics and neuropathology of primary pure dystonia. Neuropathology and Applied Neurobiology, 2012, 38, 520-534.	3.2	35
159	Clinical features of congenital myasthenic syndrome due to mutations in <i>DPAGT1</i> . Journal of Neurology, Neurosurgery and Psychiatry, 2013, 84, 1119-1125.	1.9	35
160	Investigation of somatic CNVs in brains of synucleinopathy cases using targeted SNCA analysis and single cell sequencing. Acta Neuropathologica Communications, 2019, 7, 219.	5.2	35
161	Luminescent conjugated oligothiophenes distinguish between α-synuclein assemblies of Parkinson's disease and multiple system atrophy. Acta Neuropathologica Communications, 2019, 7, 193.	5.2	35
162	Impulsiveâ€compulsive spectrum behaviors in pathologically confirmed progressive supranuclear palsy. Movement Disorders, 2010, 25, 638-642.	3.9	33

#	Article	IF	CITATIONS
163	Difference in MSA Phenotype Distribution between Populations: Genetics or Environment?. Journal of Parkinson's Disease, 2012, 2, 7-18.	2.8	33
164	The clinical and neuroanatomical phenotype of FUS associated frontotemporal lobar degeneration. Journal of Neurology, Neurosurgery and Psychiatry, 2011, 82, 1405-1407.	1.9	32
165	A 30-unit hexanucleotide repeat expansion in C9orf72 induces pathological lesions with dipeptide-repeat proteins and RNA foci, but not TDP-43 inclusions and clinical disease. Acta Neuropathologica, 2015, 130, 599-601.	7.7	31
166	Can Autonomic Testing and Imaging Contribute to the Early Diagnosis of Multiple System Atrophy? A Systematic Review and Recommendations by the <scp>Movement Disorder Society</scp> Multiple System Atrophy Study Group. Movement Disorders Clinical Practice, 2020, 7, 750-762.	1.5	31
167	Hippocampal α-synuclein pathology correlates with memory impairment in multiple system atrophy. Brain, 2020, 143, 1798-1810.	7.6	31
168	Youngâ€onset multiple system atrophy: Clinical and pathological features. Movement Disorders, 2018, 33, 1099-1107.	3.9	30
169	Chromosome 13 dementia syndromes as models of neurodegeneration. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2001, 8, 277-284.	3.0	29
170	Molecular chaperons, amyloid and preamyloid lesions in the BRI2 gene-related dementias: a morphological study. Neuropathology and Applied Neurobiology, 2006, 32, 492-504.	3.2	29
171	The novel MAPT mutation K298E: mechanisms of mutant tau toxicity, brain pathology and tau expression in induced fibroblast-derived neurons. Acta Neuropathologica, 2014, 127, 283-295.	7.7	29
172	Heritability and genetic variance of dementia with Lewy bodies. Neurobiology of Disease, 2019, 127, 492-501.	4.4	29
173	Evidence for pathological involvement of the spinal cord in motor neuron disease-inclusion dementia. Acta Neuropathologica, 2002, 103, 221-227.	7.7	28
174	Expression of BRI2 mRNA and protein in normal human brain and familial British dementia: its relevance to the pathogenesis of disease. Neuropathology and Applied Neurobiology, 2008, 34, 492-505.	3.2	28
175	Targeting of the pedunculopontine nucleus by an MRI-guided approach: a cadaver study. Journal of Neural Transmission, 2011, 118, 1487-1495.	2.8	28
176	The aftermath of boxing revisited: identifying chronic traumatic encephalopathy pathology in the original Corsellis boxer series. Acta Neuropathologica, 2018, 136, 973-974.	7.7	28
177	Silver staining (Campbell-Switzer) of neuronal α-synuclein assemblies induced by multiple system atrophy and Parkinson's disease brain extracts in transgenic mice. Acta Neuropathologica Communications, 2019, 7, 148.	5.2	28
178	Early presentation of urinary retention in multiple system atrophy: can the disease begin in the sacral spinal cord?. Journal of Neurology, 2020, 267, 659-664.	3.6	28
179	COX10Mutations Resulting in Complex Multisystem Mitochondrial Disease That Remains Stable Into Adulthood. JAMA Neurology, 2013, 70, 1556-61.	9.0	27
180	Analysis of neurodegenerative disease-causing genes in dementia with Lewy bodies. Acta Neuropathologica Communications, 2020, 8, 5.	5.2	27

#	Article	IF	CITATIONS
181	Sporadic and Familial Dementia With Ubiquitin-Positive Tau-Negative Inclusions. Archives of Neurology, 2005, 62, 1097.	4.5	26
182	Disease-related patterns of in vivo pathology in Corticobasal syndrome. European Journal of Nuclear Medicine and Molecular Imaging, 2018, 45, 2413-2425.	6.4	26
183	Review: Clinical, neuropathological and genetic features of Lewy body dementias. Neuropathology and Applied Neurobiology, 2019, 45, 635-654.	3.2	26
184	Multiple system atrophy is not caused by C9orf72 hexanucleotide repeat expansions. Neurobiology of Aging, 2015, 36, 1223.e1-1223.e2.	3.1	25
185	Preferential association of serum amyloid P component with fibrillar deposits in familial British and Danish dementias: Similarities with Alzheimer's disease. Journal of the Neurological Sciences, 2007, 257, 88-96.	0.6	24
186	Clinical and pathological heterogeneity in lateâ€onset partial merosin deficiency. Muscle and Nerve, 2011, 44, 590-593.	2.2	24
187	Oculoleptomeningeal Amyloidosis associated with transthyretin Leu12Pro in an African patient. Journal of Neurology, 2015, 262, 228-234.	3.6	24
188	Identification of multiple system atrophy mimicking Parkinson's disease or progressive supranuclear palsy. Brain, 2021, 144, 1138-1151.	7.6	24
189	Can olfactory bulb biopsy be justified for the diagnosis of Parkinson's disease? Comments on "olfactory bulb α-synucleinopathy has high specificity and sensitivity for Lewy body disorders― Acta Neuropathologica, 2009, 117, 213-214.	7.7	23
190	Tau acts as an independent genetic risk factor in pathologically proven PD. Neurobiology of Aging, 2012, 33, 838.e7-838.e11.	3.1	23
191	Recommendations of the Global Multiple System Atrophy Research Roadmap Meeting. Neurology, 2018, 90, 74-82.	1.1	23
192	Association of autonomic symptoms with disease progression and survival in progressive supranuclear palsy. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 555-561.	1.9	23
193	MM2 subtype of sporadic Creutzfeldt-Jakob disease may underlie the clinical presentation of progressive supranuclear palsy. Journal of Neurology, 2013, 260, 1031-1036.	3.6	22
194	Strawberries on the Brain—Intracranial Capillary Hemangioma: Two Case Reports and Systematic Literature Review in Children and Adults. World Neurosurgery, 2013, 80, 900.e13-900.e21.	1.3	22
195	Hypothalamic α-synuclein and its relation to weight loss and autonomic symptoms in Parkinson's disease. Movement Disorders, 2017, 32, 296-298.	3.9	22
196	Parkinson's disease with Onuf's nucleus involvement mimicking multiple system atrophy. Journal of Neurology, Neurosurgery and Psychiatry, 2008, 79, 232-234.	1.9	21
197	Neuropathological features of genetically confirmed DYT1 dystonia: investigating disease-specific inclusions. Acta Neuropathologica Communications, 2014, 2, 159.	5.2	21
198	Concomitant progressive supranuclear palsy and chronic traumatic encephalopathy in a boxer. Acta Neuropathologica Communications, 2014, 2, 24.	5.2	21

#	Article	IF	CITATIONS
199	A multimodal computational pipeline for 3D histology of the human brain. Scientific Reports, 2020, 10, 13839.	3.3	21
200	Expanding the molecular and phenotypic spectrum of truncating <i>MT-ATP6</i> mutations. Neurology: Genetics, 2020, 6, e381.	1.9	21
201	Anatamopathological spectrum of tauopathies. Movement Disorders, 2003, 18, 13-20.	3.9	20
202	Concomitant fragile X-associated tremor ataxia syndrome and Parkinson's disease: a clinicopathological report of two cases: TableÂ1. Journal of Neurology, Neurosurgery and Psychiatry, 2015, 86, 934-936.	1.9	20
203	Transcriptional profiling of multiple system atrophy cerebellar tissue highlights differences between the parkinsonian and cerebellar sub-types of the disease. Acta Neuropathologica Communications, 2020, 8, 76.	5.2	20
204	Concomitant progressive supranuclear palsy and multiple system atrophy: More than a simple twist of fate?. Neuroscience Letters, 2009, 467, 208-211.	2.1	19
205	Clinicopathologic and molecular spectrum of <i>RNASEH1</i> -related mitochondrial disease. Neurology: Genetics, 2017, 3, e149.	1.9	19
206	A novel <i>TBK1</i> mutation in a family with diverse frontotemporal dementia spectrum disorders. Journal of Physical Education and Sports Management, 2019, 5, a003913.	1.2	19
207	Novel clinicopathological characteristics differentiate dementia with Lewy bodies from Parkinson's disease dementia. Neuropathology and Applied Neurobiology, 2021, 47, 143-156.	3.2	19
208	From exercise intolerance to functional improvement: the second wind phenomenon in the identification of McArdle disease. Arquivos De Neuro-Psiquiatria, 2014, 72, 538-541.	0.8	18
209	Ongoing Developments in Sporadic Inclusion Body Myositis. Current Rheumatology Reports, 2014, 16, 477.	4.7	18
210	DYT6 Dystonia: A Neuropathological Study. Neurodegenerative Diseases, 2016, 16, 273-278.	1.4	18
211	Homozygous mutation in <i>HSPB1</i> causing distal vacuolar myopathy and motor neuropathy. Neurology: Genetics, 2017, 3, e168.	1.9	18
212	Immunohistochemical and Molecular Investigations Show Alteration in the Inflammatory Profile of Multiple System Atrophy Brain. Journal of Neuropathology and Experimental Neurology, 2018, 77, 598-607.	1.7	18
213	Intracranial extracerebral follicular lymphoma mimicking a sphenoid wing meningioma. Journal of Neurology, Neurosurgery and Psychiatry, 1999, 67, 251-252.	1.9	17
214	The dynamics of blood–brain barrier breakdown in an experimental model of glial cell degeneration. Neuroscience, 2001, 103, 873-883.	2.3	17
215	Human T cell leukaemia virus type I associated neuromuscular disease causing respiratory failure. Journal of Neurology, Neurosurgery and Psychiatry, 2002, 72, 650-652.	1.9	17
216	UCHL-1 gene in multiple system atrophy: A haplotype tagging approach. Movement Disorders, 2005, 20, 1338-1343.	3.9	17

#	Article	IF	CITATIONS
217	Amyloidogenesis in Familial British Dementia Is Associated with a Genetic Defect on Chromosome 13. Annals of the New York Academy of Sciences, 2000, 920, 84-92.	3.8	17
218	Zebra body myopathy is caused by a mutation in the skeletal muscle actin gene (ACTA1). Neuromuscular Disorders, 2015, 25, 388-391.	0.6	17
219	Lower nucleus accumbens α-synuclein load and D3 receptor levels in Parkinson's disease with impulsive compulsive behaviours. Brain, 2019, 142, 3580-3591.	7.6	17
220	Idiopathic inflammatory myopathy. Neurology, 2019, 93, e889-e894.	1.1	17
221	Desmosomal glycoproteins 2 and 3 (desmocollins) show N-terminal similarity to calcium-dependent cell-cell adhesion molecules. Journal of Cell Science, 1990, 97 (Pt 2), 239-46.	2.0	17
222	Increasing or decreasing nervous activity modulates the severity of the glio-vascular lesions of 1,3-dinitrobenzene in the rat: effects of the tremorgenic pyrethroid, Bifenthrin, and of anaesthesia. Acta Neuropathologica, 1997, 93, 159-165.	7.7	16
223	Mutational analysis of parkin and PINK1 in multiple system atrophy. Neurobiology of Aging, 2011, 32, 548.e7.	3.1	16
224	Distal myopathy with cachexia: an unrecognised phenotype caused by dominantly-inherited mitochondrial polymerase γ mutations. Journal of Neurology, Neurosurgery and Psychiatry, 2013, 84, 107-110.	1.9	16
225	The effects of an intronic polymorphism in TOMM40 and APOE genotypes in sporadic inclusion body myositis. Neurobiology of Aging, 2015, 36, 1766.e1-1766.e3.	3.1	16
226	Effect of Fluorinert on the Histological Properties of Formalin-Fixed Human Brain Tissue. Journal of Neuropathology and Experimental Neurology, 2018, 77, 1085-1090.	1.7	16
227	Exploring the putative role of kallikreinâ€6, calpainâ€1 and cathepsinâ€D in the proteolytic degradation of αâ€synuclein in multiple system atrophy. Neuropathology and Applied Neurobiology, 2019, 45, 347-360.	3.2	16
228	The genetic and clinicoâ€pathological profile of earlyâ€onset progressive supranuclear palsy. Movement Disorders, 2019, 34, 1307-1314.	3.9	16
229	Neurodegenerative movement disorders: An epigenetics perspective and promise for the future. Neuropathology and Applied Neurobiology, 2021, 47, 897-909.	3.2	16
230	NR4A2 genetic variation in sporadic Parkinson's disease: A genewide approach. Movement Disorders, 2006, 21, 1960-1963.	3.9	15
231	Shunt responsive progressive supranuclear palsy?. Movement Disorders, 2007, 22, 902-903.	3.9	15
232	Fulminant corticobasal degeneration: a distinct variant with predominant neuronal tau aggregates. Acta Neuropathologica, 2020, 139, 717-734.	7.7	15
233	Pathological substrate for regional distribution of increased atrophy rates in progressive supranuclear palsy. Journal of Neurology, Neurosurgery and Psychiatry, 2004, 75, 1772-1775.	1.9	14
234	Abundant pyroglutamate-modified ABri and ADan peptides in extracellular and vascular amyloid deposits in familial British and Danish dementias. Neurobiology of Aging, 2013, 34, 1416-1425.	3.1	14

#	Article	IF	CITATIONS
235	Faster disease progression in Parkinson's disease with type 2 diabetes is not associated with increased αâ€synuclein, tau, amyloidâ€Î² or vascular pathology. Neuropathology and Applied Neurobiology, 2021, 47, 1080-1091.	3.2	14
236	Autophagic vacuolar myopathy in twin girls. Neuropathology and Applied Neurobiology, 2006, 32, 253-259.	3.2	13
237	A comprehensive screening of copy number variability in dementia with Lewy bodies. Neurobiology of Aging, 2019, 75, 223.e1-223.e10.	3.1	13
238	Analysis of C9orf72 repeat expansions in a large international cohort of dementia with Lewy bodies. Neurobiology of Aging, 2017, 49, 214.e13-214.e15.	3.1	12
239	A Huntington's disease phenocopy characterized by pallido-nigro-luysian degeneration with brain iron accumulation and p62-positive glial inclusions. Neuropathology and Applied Neurobiology, 2010, 36, 551-557.	3.2	11
240	Deep brain stimulation of the subthalamic nucleus: histological verification and 9.4-T MRI correlation. Acta Neurochirurgica, 2015, 157, 2143-2147.	1.7	11
241	MSA or SCA 17? A clinicopathological case update. Movement Disorders, 2016, 31, 1582-1584.	3.9	11
242	Parkinson's disease without nigral degeneration: a pathological correlate of scans without evidence of dopaminergic deficit (SWEDD)?. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 633-641.	1.9	11
243	Calpainopathy with macrophage-rich, regional inflammatory infiltrates. Neuromuscular Disorders, 2017, 27, 738-741.	0.6	11
244	LRP10 in α-synucleinopathies. Lancet Neurology, The, 2018, 17, 1033-1034.	10.2	11
245	MOBP and HIP1 in multiple system atrophy: New αâ€synuclein partners in glial cytoplasmic inclusions implicated in the disease pathogenesis. Neuropathology and Applied Neurobiology, 2021, 47, 640-652.	3.2	11
246	Morphometric analyses of normal pediatric brachial biceps and quadriceps muscle tissue. Histology and Histopathology, 2013, 28, 525-30.	0.7	11
247	Knight's move thinking? Mild cognitive impairment in a chess player. Neurocase, 2005, 11, 26-31.	0.6	10
248	Quantification of normal range of inflammatory changes in morphologically normal pediatric muscle. Muscle and Nerve, 2008, 37, 259-261.	2.2	10
249	Tubular Aggregates and Cylindrical Spirals Have Distinct Immunohistochemical Signatures. Journal of Neuropathology and Experimental Neurology, 2016, 75, 1171-1178.	1.7	10
250	Development of parkinsonism after long-standing cervical dystonia – A cohort. Journal of the Neurological Sciences, 2021, 427, 117477.	0.6	10
251	Autophagy in neurodegeneration and aging. Aging, 2018, 10, 3632-3633.	3.1	10
252	Assembly of α-synuclein and neurodegeneration in the central nervous system of heterozygousÂM83 mice following the peripheral administration of α-synuclein seeds. Acta Neuropathologica Communications, 2021, 9, 189.	5.2	10

#	Article	IF	CITATIONS
253	Glutathione depletion increases brain susceptibility to m-dinitrobenzene neurotoxicity. NeuroToxicology, 1999, 20, 83-90.	3.0	10
254	Marked Hemiatrophy in Carriers of Duchenne Muscular Dystrophy. Archives of Neurology, 2010, 67, 497-500.	4.5	9
255	<scp>TDP</scp> â€43 pathology is present in most postâ€encephalitic parkinsonism brains. Neuropathology and Applied Neurobiology, 2014, 40, 654-657.	3.2	9
256	The presubiculum is preserved from neurodegenerative changes in Alzheimer's disease. Acta Neuropathologica Communications, 2018, 6, 62.	5.2	9
257	The Glio-Vascular Toxicity of m -Dinitro- Benzene and Related Agents: Modulation of Toxicity by Neuronal Activation. Archives of Toxicology Supplement, 1996, 18, 140-148.	0.7	9
258	Prion-like α-synuclein pathology in the brain of infants with Krabbe disease. Brain, 2022, 145, 1257-1263.	7.6	9
259	Multiple System Atrophy and Repeat Expansions in <i>C9orf72</i> . JAMA Neurology, 2014, 71, 1190.	9.0	8
260	Genetic and phenotypic characterisation of inherited myopathies in a tertiary neuromuscular centre. Neuromuscular Disorders, 2019, 29, 747-757.	0.6	8
261	Signs of Chronic Hypoxia Suggest a Novel Pathophysiological Event in <scp>αâ€Synucleinopathies</scp> . Movement Disorders, 2020, 35, 2333-2338.	3.9	8
262	Familial and sporadic cerebral amyloid angiopathies associated with dementia and the BRI dementias. , 2004, , 330-352.		8
263	Genetic defects are common in myopathies with tubular aggregates. Annals of Clinical and Translational Neurology, 2022, 9, 4-15.	3.7	7
264	Distal myopathy with tubular aggregates: a new phenotype associated with multiple deletions in mitochondrial DNA?. Journal of Neurology, Neurosurgery and Psychiatry, 2002, 73, 207-208.	1.9	6
265	Diagnostic implications of histological analysis of neurosurgical aspirate in addition to routine resections. Neuropathology, 2012, 32, 44-50.	1.2	6
266	Analysis of the prion protein gene in multiple system atrophy. Neurobiology of Aging, 2017, 49, 216.e15-216.e18.	3.1	6
267	GYG1 causing progressive limb girdle myopathy with onset during teenage years (polyglucosan body) Tj ETQq1	1 0,78431	4 rgBT /Over
268	Corticospinal tract degeneration and temporal lobe atrophy in frontotemporal lobar degeneration TDPâ€43 type C pathology. Neuropathology and Applied Neurobiology, 2020, 46, 296-299.	3.2	6
269	Neuropathological Findings in Ephedrone Encephalopathy. Movement Disorders, 2020, 35, 1858-1863.	3.9	6
270	Sodium and chloride channelopathies with myositis: Coincidence or connection?. Muscle and Nerve, 2011, 44, 283-288.	2.2	5

#	Article	IF	CITATIONS
271	Epigenomics and transcriptomics analyses of multiple system atrophy brain tissue supports a role for inflammatory processes in disease pathogenesis. Acta Neuropathologica Communications, 2020, 8, 71.	5.2	5
272	Association of clusterin with the BRI2-derived amyloid molecules ABri and ADan. Neurobiology of Disease, 2021, 158, 105452.	4.4	5
273	Familial British dementia (FBD): a cerebral amyloidosis with systemic amyloid deposition. Neuropathology and Applied Neurobiology, 2002, 28, 148-148.	3.2	4
274	Polymyositis masquerading as mitochondrial toxicity. Sexually Transmitted Infections, 2003, 79, 417-418.	1.9	4
275	Neuropathological progression of clinical Parkinson disease subtypes. Nature Reviews Neurology, 2019, 15, 361-361.	10.1	4
276	A case of TDP-43 type C pathology presenting as nonfluent variant primary progressive aphasia. Neurocase, 2020, 26, 1-6.	0.6	4
277	TDP-43 pathology may occur in the BRI2 gene-related dementias. Acta Neuropathologica, 2011, 121, 559-560.	7.7	3
278	Primary progressive aphasia with parkinsonism. Movement Disorders, 2013, 28, 741-746.	3.9	3
279	Foix–Chavany–Marie syndrome due to type E TDP43 pathology. Neuropathology and Applied Neurobiology, 2020, 46, 292-295.	3.2	3
280	A Clinicopathologic Study of Movement Disorders in Frontotemporal Lobar Degeneration. Movement Disorders, 2021, 36, 632-641.	3.9	3
281	Variant Alzheimer's disease with spastic paraparesis and cotton wool plaques is caused by PSâ€1 mutations that lead to exceptionally high amyloidâ€î² concentrations. Annals of Neurology, 2000, 48, 806-808.	5.3	3
282	Parkinson's disease with Onuf's nucleus involvement mimicking multiple system atrophy. BMJ Case Reports, 2009, 2009, bcr0820080774-bcr0820080774.	0.5	3
283	LETTER TO THE EDITOR Atypical Granulomatous Myositis and Pulmonary Sarcoidosis. Open Rheumatology Journal, 2015, 9, 57-59.	0.2	3
284	A novel frameshift deletion in autosomal recessive SBF1-related syndromic neuropathy with necklace fibres. Journal of Neurology, 2020, 267, 2705-2712.	3.6	3
285	Unusual muscle disease in HIV infected patients. Sexually Transmitted Infections, 2004, 80, 315-317.	1.9	2
286	A case of necrotizing myopathy with proximal weakness and cardiomyopathy. Neurology, 2012, 78, 1527-1532.	1.1	2
287	EVIDENCE FOR PATHOLOGICAL INVOLVEMENT OF THE SPINAL CORD IN MOTOR NEURON DISEASE-INCLUSION DEMENTIA. Journal of Neuropathology and Experimental Neurology, 1999, 58, 547.	1.7	1
288	Pupillary Dysfunction in an Atypical Case of Mitochondrial Myopathy With Tubular Aggregates. Journal of Neuro-Ophthalmology, 2010, 30, 153-156.	0.8	1

#	Article	IF	CITATIONS
289	PONM21 Electron microscopy does not add to the diagnostic accuracy of muscle biopsy for suspected mitochondrial disease. Journal of Neurology, Neurosurgery and Psychiatry, 2010, 81, e65-e65.	1.9	1
290	POMD01 Blinded analysis of conventional MRI in a cohort of pathologically confirmed parkinsonian illnesses. Journal of Neurology, Neurosurgery and Psychiatry, 2010, 81, e57-e57.	1.9	1
291	Progressive parkinsonism, oculomotor abnormalities and autonomic dysfunction: Clinicopathological case. Movement Disorders, 2011, 26, 424-429.	3.9	1
292	Authors response to scientific correspondence. Neuropathology and Applied Neurobiology, 2012, 38, 381-381.	3.2	1
293	Reply to: Young―onset multiple system atrophy. Movement Disorders, 2018, 33, 1975-1976.	3.9	1
294	PYROGLUTAMATE FORMATION AT THE N-TERMINI OF ABRI MOLECULES IN FAMILIAL BRITISH DEMENTIA IS NOT RESTRICTED TO THE CENTRAL NERVOUS SYSTEM. Hirosaki Medical Journal, 2010, 61, S262-S269.	1.0	1
295	Reply to â€~Impulse control disorders are associated with lower ventral striatum dopamine D3 receptor availability in Parkinson's disease: A [11C]-PHNO PET study.'. Parkinsonism and Related Disorders, 2021, 93, 31-32.	2.2	1
296	P1-262 Familial British and Danish dementias: BRI2 gene and protein expression by human cerebral cells. Neurobiology of Aging, 2004, 25, S170-S171.	3.1	0
297	P1-264 The possible origin of the amyloid peptides in the BRI2 gene-related dementias. Neurobiology of Aging, 2004, 25, S171.	3.1	0
298	POG04 Multiple mitochondrial DNA deletions, cyclooxygenase-negative fibres and slowly progressive cognitive decline with psychiatric features. Journal of Neurology, Neurosurgery and Psychiatry, 2010, 81, e49-e49.	1.9	0
299	096â€Inclusion body myositis: a diagnostic challenge. Journal of Neurology, Neurosurgery and Psychiatry, 2012, 83, e1.44-e1.	1.9	0
300	Reply to letter: multiple system atrophy-parkinsonism with slow progression and prolonged survival: A diagnostic catch. Movement Disorders, 2013, 28, 408-408.	3.9	0
301	Inclusion body myositis: clinical review and current practice. Clinical Practice (London, England), 2014, 11, 623-637.	0.1	0
302	A 29â€Yearâ€Old Man with Difficulty Climbing the Stairs. Brain Pathology, 2014, 24, 549-550.	4.1	0
303	O44. An Integrative Analytical Approach to Subphenotyping of Juvenile Dermatomyositis. Rheumatology, 2015, , .	1.9	0
304	Biopsy pathology in a large cohort of juvenile dermatomyositis is heterogeneous and, for the most part, independent of autoantibody phenotype. Canadian Journal of Neurological Sciences, 2017, 44, S6-S6.	0.5	0
305	[P2–441]: PATHOLOGICAL CORRELATES OF WHITE MATTER HYPERINTENSITIES ON CADAVERIC MRI IN PROGRANULINâ€ASSOCIATED FRONTOTEMPORAL DEMENTIA. Alzheimer's and Dementia, 2017, 13, P805.	0.8	0
306	[P2–158]: IS THE PRESUBICULUM PROTECTED FROM NEURODEGENERATIVE CHANGES? A PATHOLOGICAL AN BIOCHEMICAL INVESTIGATION. Alzheimer's and Dementia, 2017, 13, P668.	D _{0.8}	0

#	Article	IF	CITATIONS
307	Antibody-Mediated Muscle Disease?. , 2017, , 203-206.		0