Hananeh Fonoudi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/425460/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of Drug Transporter Genomic Variants and Inhibitors That Protect Against Doxorubicin-Induced Cardiotoxicity. Circulation, 2022, 145, 279-294.	1.6	46
2	Cellular model systems to study cardiovascular injury from chemotherapy. Journal of Thrombosis and Thrombolysis, 2021, 51, 890-896.	2.1	8
3	An updated protocol for the cost-effective and weekend-free culture of human induced pluripotent stem cells. STAR Protocols, 2021, 2, 100213.	1.2	5
4	RARG variant predictive of doxorubicin-induced cardiotoxicity identifies a cardioprotective therapy. Cell Stem Cell, 2021, 28, 2076-2089.e7.	11.1	36
5	Generating a Costâ€Effective, Weekendâ€Free Chemically Defined Human Induced Pluripotent Stem Cell (hiPSC) Culture Medium. Current Protocols in Stem Cell Biology, 2020, 53, e110.	3.0	1
6	Negligible-Cost and Weekend-Free Chemically Defined Human iPSC Culture. Stem Cell Reports, 2020, 14, 256-270.	4.8	80
7	Prospective Isolation of ISL1+ Cardiac Progenitors from Human ESCs forÂMyocardial Infarction Therapy. Stem Cell Reports, 2018, 10, 848-859.	4.8	23
8	Turning Potential Into Action: Using Pluripotent Stem Cells to Understand Heart Development and Function in Health and Disease. Stem Cells Translational Medicine, 2017, 6, 1452-1457.	3.3	3
9	Transient Activation of Reprogramming Transcription Factors Using Protein Transduction Facilitates Conversion of Human Fibroblasts Toward Cardiomyocyte-Like Cells. Molecular Biotechnology, 2017, 59, 207-220.	2.4	13
10	Large-Scale Production of Cardiomyocytes from Human Pluripotent Stem Cells Using a Highly Reproducible Small Molecule-Based Differentiation Protocol. Journal of Visualized Experiments, 2016, , .	0.3	13
11	Isolation and characterization of cardiogenic, stem-like cardiac precursors from heart samples of patients with congenital heart disease. Life Sciences, 2015, 137, 105-115.	4.3	9
12	A Universal and Robust Integrated Platform for the Scalable Production of Human Cardiomyocytes From Pluripotent Stem Cells. Stem Cells Translational Medicine, 2015, 4, 1482-1494.	3.3	104
13	NKX2-5 mutations causative for congenital heart disease retain functionality and are directed to hundreds of targets. ELife, 2015, 4, .	6.0	54
14	ISL1 Protein Transduction Promotes Cardiomyocyte Differentiation from Human Embryonic Stem Cells. PLoS ONE, 2013, 8, e55577.	2.5	34
15	Inhibition of glycogen synthase kinase-3 promotes efficient derivation of pluripotent stem cells from neonatal mouse testis. Human Reproduction, 2012, 27, 2312-2324.	0.9	11