Gregory R Ziegler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4254257/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Gelation Of Proteins. Advances in Food and Nutrition Research, 1990, 34, 203-298.	1.5	268
2	Feeding the World Today and Tomorrow: The Importance of Food Science and Technology. Comprehensive Reviews in Food Science and Food Safety, 2010, 9, 572-599.	5.9	248
3	Functionality of muscle constituents in the processing of comminuted meat products. Critical Reviews in Food Science and Nutrition, 1983, 18, 99-121.	1.3	176
4	Role of Molecular Entanglements in Starch Fiber Formation by Electrospinning. Biomacromolecules, 2012, 13, 2247-2253.	2.6	171
5	Fabrication of pure starch fibers by electrospinning. Food Hydrocolloids, 2014, 36, 20-25.	5.6	149
6	Rheological Properties of Nonfat Yogurt Stabilized Using Lactobacillus delbrueckii ssp. bulgaricus Producing Exopolysaccharide or Using Commercial Stabilizer Systems. Journal of Dairy Science, 1997, 80, 252-263.	1.4	145
7	Avocado (Persea americana) Seed as a Source of Bioactive Phytochemicals. Current Pharmaceutical Design, 2013, 19, 6133-6140.	0.9	138
8	Optimization of Exopolysaccharide Production by <i>Lactobacillus delbrueckii</i> subsp. <i>bulgaricus</i> RR Grown in a Semidefined Medium. Applied and Environmental Microbiology, 1998, 64, 659-664.	1.4	118
9	Formation of inclusion complexes of starch with fatty acid esters of bioactive compounds. Carbohydrate Polymers, 2011, 83, 1869-1878.	5.1	114
10	Fat, Moisture, and Ethanol Migration through Chocolates and Confectionary Coatings. Critical Reviews in Food Science and Nutrition, 2002, 42, 583-626.	5.4	107
11	Molecular encapsulation of ascorbyl palmitate in preformed V-type starch and amylose. Carbohydrate Polymers, 2014, 111, 256-263.	5.1	104
12	Quantitative relationship between electrospinning parameters and starch fiber diameter. Carbohydrate Polymers, 2013, 92, 1416-1422.	5.1	103
13	Antioxidant property of edible mushrooms collected from Ethiopia. Food Chemistry, 2014, 157, 30-36.	4.2	101
14	Texture and structure of gelatin/pectin-based gummy confections. Food Hydrocolloids, 2001, 15, 643-653.	5.6	87
15	Characterization of Starch Polymorphic Structures Using Vibrational Sum Frequency Generation Spectroscopy. Journal of Physical Chemistry B, 2014, 118, 1775-1783.	1.2	85
16	Encapsulation and stabilization of \hat{l}^2 -carotene by amylose inclusion complexes. Food Research International, 2018, 105, 446-452.	2.9	76
17	The role of particle size distribution of suspended solids in defining the flow properties of milk chocolate. International Journal of Food Properties, 2000, 3, 137-147.	1.3	75
18	THE ROLE OF PARTICLE SIZE DISTRIBUTION OF SUSPENDED SOLIDS IN DEFINING THE SENSORY PROPERTIES OF MILK CHOCOLATE. International Journal of Food Properties, 2001, 4, 353-370.	1.3	72

#	Article	IF	CITATIONS
19	Starch-menthol inclusion complex: Structure and release kinetics. Food Hydrocolloids, 2019, 97, 105183.	5.6	71
20	'Flavor-fade' and Off-Flavors in Ground Roasted Peanuts As Related to Selected Pyrazines and Aldehydes. Journal of Food Science, 1996, 61, 469-472.	1.5	70
21	Spherulitic Crystallization in Starch as a Model for Starch Granule Initiation. Biomacromolecules, 2005, 6, 1547-1554.	2.6	65
22	1-Octen-3-ol in the Cultivated Mushroom, Agaricus bisporus. Journal of Food Science, 1992, 57, 704-706.	1.5	60
23	Check-all-that-apply (CATA), sorting, and polarized sensory positioning (PSP) with astringent stimuli. Food Quality and Preference, 2015, 45, 41-49.	2.3	60
24	Amylose Crystallization from Concentrated Aqueous Solution. Biomacromolecules, 2006, 7, 761-770.	2.6	58
25	Physical and Sensory Properties of Milk Chocolate Formulated with Anhydrous Milk Fat Fractions. Journal of Food Science, 1996, 61, 1068-1073.	1.5	57
26	Formation of starch-guest inclusion complexes in electrospun starch fibers. Food Hydrocolloids, 2014, 38, 211-219.	5.6	56
27	Rejection thresholds in chocolate milk: Evidence for segmentation. Food Quality and Preference, 2012, 26, 128-133.	2.3	54
28	Physical and Microscopic Characterization of Dry Whole Milk with Altered Lactose Content. 2. Effect of Lactose Crystallization. Journal of Dairy Science, 1994, 77, 1198-1204.	1.4	53
29	Just-about-right and ideal scaling provide similar insights into the influence of sensory attributes on liking. Food Quality and Preference, 2014, 37, 71-78.	2.3	53
30	Oral somatosensatory acuity is related to particle size perception in chocolate. Scientific Reports, 2019, 9, 7437.	1.6	53
31	Effect of guest structure on amylose-guest inclusion complexation. Food Hydrocolloids, 2019, 97, 105188.	5.6	50
32	Fabrication of starch - Nanocellulose composite fibers by electrospinning. Food Hydrocolloids, 2019, 90, 90-98.	5.6	50
33	Spherulitic crystallization of gelatinized maize starch and its fractions. Carbohydrate Polymers, 2002, 49, 439-448.	5.1	48
34	A Colored Avocado Seed Extract as a Potential Natural Colorant. Journal of Food Science, 2011, 76, C1335-41.	1.5	48
35	Rheological aspects in fabricating pullulan fibers by electro-wet-spinning. Food Hydrocolloids, 2014, 38, 220-226.	5.6	48
36	SUPERCRITICAL CARBON DIOXIDE TREATMENT TO INACTIVATE AEROBIC MICROORGANISMS ON ALFALFA SEEDS. Journal of Food Safety, 2001, 21, 215-223.	1.1	42

#	Article	IF	CITATIONS
37	Residence time distribution in a co-rotating, twin-screw continuous mixer by the step change method. Journal of Food Engineering, 2003, 59, 161-167.	2.7	42
38	The Interaction of Genotype and Environment Determines Variation in the Maize Kernel Ionome. G3: Genes, Genomes, Genetics, 2016, 6, 4175-4183.	0.8	41
39	Dose-Response Relationships for Vanilla Flavor and Sucrose in Skim Milk: Evidence of Synergy. Beverages, 2018, 4, 73.	1.3	41
40	Chemical and thermal characteristics of milk-fat fractions isolated by a melt crystallization. JAOCS, Journal of the American Oil Chemists' Society, 1996, 73, 1647-1652.	0.8	40
41	Moisture migration through chocolate-flavored confectionery coatings. Journal of Food Engineering, 2005, 66, 177-186.	2.7	40
42	Oil migration in chocolate: A case of non-Fickian diffusion. Journal of Food Engineering, 2009, 92, 261-268.	2.7	40
43	In Vitro Antioxidant and Cancer Inhibitory Activity of a Colored Avocado Seed Extract. International Journal of Food Science, 2019, 2019, 1-7.	0.9	40
44	Ultrasonic monitoring of food freezing. Journal of Food Engineering, 2004, 62, 263-269.	2.7	39
45	Investigation of imitation cheese matrix development using light microscopy and NMR relaxometry. International Dairy Journal, 2008, 18, 641-648.	1.5	39
46	Spatial mapping of solid and liquid lipid in confectionery products using a 1D centric SPRITE MRI technique. Food Research International, 2006, 39, 365-371.	2.9	38
47	Inclusion of starch in imitation cheese: Its influence on water mobility and cheese functionality. Food Hydrocolloids, 2008, 22, 1612-1621.	5.6	37
48	Factors Affecting 1-Octen-3-ol in Mushrooms at Harvest and During Postharvest Storage. Journal of Food Science, 1993, 58, 331-334.	1.5	35
49	Moisture migration in soft-panned confections during engrossing and aging as observed by magnetic resonance imaging. Journal of Food Engineering, 2001, 48, 257-267.	2.7	35
50	Spherulitic crystallization of starch: influence of botanical origin and extent of thermal treatment. Food Hydrocolloids, 2003, 17, 487-494.	5.6	35
51	Comparison of microscopy techniques for the examination of the microstructure of starch-containing imitation cheeses. Food Research International, 2008, 41, 472-479.	2.9	34
52	A Process for Increasing the Free Fat Content of Spray-dried Whole Milk Powder. Journal of Food Science, 2003, 68, 210-216.	1.5	33
53	Optimization of Whole Milk Powder Processing Variables with Neural Networks and Genetic Algorithms. Food and Bioproducts Processing, 2007, 85, 336-343.	1.8	33
54	Effect of starch fractions on spherulite formation and microstructure. Carbohydrate Polymers, 2011, 83, 1757-1765.	5.1	33

#	Article	IF	CITATIONS
55	Electrospun nanofiber mats from aqueous starch-pullulan dispersions: Optimizing dispersion properties for electrospinning. International Journal of Biological Macromolecules, 2019, 133, 1168-1174.	3.6	33
56	Electrospinning of Octenylsuccinylated Starch-Pullulan Nanofibers from Aqueous Dispersions. Carbohydrate Polymers, 2021, 258, 116933.	5.1	33
57	Relationship of Water Content to Textural Characteristics, Water Activity, and Thermal Conductivity of Some Commercial Sausages. Journal of Food Science, 1987, 52, 901-905.	1.5	30
58	Effect of 10-oxo-trans-8-decenoic acid on growth of Agaricus bisporus. Phytochemistry, 1992, 31, 4059-4064.	1.4	29
59	HEAT-INDUCED TRANSITIONS IN THE PROTEIN-PROTEIN INTERACTION OF BOVINE NATURAL ACTOMYOSIN. Journal of Food Biochemistry, 1984, 8, 25-38.	1.2	28
60	Physical and Microscopic Characterization of Dry Whole Milk with Altered Lactose Content. 1. Effect of Lactose Concentration. Journal of Dairy Science, 1994, 77, 1189-1197.	1.4	28
61	Structural features of non-granular spherulitic maize starch. Carbohydrate Research, 2002, 337, 1467-1475.	1.1	28
62	Preparation of spherulites from amylose–palmitic acid complexes. Carbohydrate Polymers, 2010, 80, 53-64.	5.1	27
63	Interpreting consumer preferences: Physicohedonic and psychohedonic models yield different information in a coffee-flavored dairy beverage. Food Quality and Preference, 2014, 36, 27-32.	2.3	27
64	Sensory Characteristics of Milk Chocolate with Lactose from Spray-Dried Milk Powder. Journal of Food Science, 1994, 59, 1239-1243.	1.5	26
65	Aligned wet-electrospun starch fiber mats. Food Hydrocolloids, 2019, 90, 113-117.	5.6	26
66	Moisture migration in starch molding operations as observed by magnetic resonance imaging. Food Research International, 2003, 36, 331-340.	2.9	25
67	Diffusion of Moisture through Chocolate-flavoured Confectionery Coatings. Food and Bioproducts Processing, 2004, 82, 35-43.	1.8	25
68	User Preferences in a Carrageenan-Based Vaginal Drug Delivery System. PLoS ONE, 2013, 8, e54975.	1.1	25
69	Perseorangin: A natural pigment from avocado (Persea americana) seed. Food Chemistry, 2019, 293, 15-22.	4.2	25
70	Deodorization and deacidification of edible oils with dense carbon dioxide. JAOCS, Journal of the American Oil Chemists' Society, 1993, 70, 947-953.	0.8	24
71	Release of Tenofovir from Carrageenan-Based Vaginal Suppositories. Pharmaceutics, 2014, 6, 366-377.	2.0	24
72	Salivary protein levels as a predictor of perceived astringency in model systems and solid foods. Physiology and Behavior, 2016, 163, 56-63.	1.0	24

#	Article	IF	CITATIONS
73	Fabrication of κ-carrageenan fibers by wet spinning: Addition of Î1-carrageenan. Food Hydrocolloids, 2013, 30, 302-306.	5.6	23
74	Inclusion complex formation between high amylose corn starch and alkylresorcinols from rye bran. Food Chemistry, 2018, 259, 1-6.	4.2	23
75	Viscosity of Molten Milk Chocolate with Lactose from Spray-Dried Whole-Milk Powders. Journal of Food Science, 1995, 60, 120-124.	1.5	22
76	Shape of vaginal suppositories affects willingness-to-try and preference. Antiviral Research, 2013, 97, 280-284.	1.9	22
77	Tolerance for High Flavanol Cocoa Powder in Semisweet Chocolate. Nutrients, 2013, 5, 2258-2267.	1.7	22
78	Quantitative assessment of phase composition and morphology of two-phase gelatin–pectin gels using fluorescence microscopy. Food Hydrocolloids, 2000, 14, 579-590.	5.6	21
79	Patents on Fiber Spinning from Starches. Recent Patents on Food, Nutrition & Agriculture, 2012, 4, 210-219.	0.5	21
80	INFLUENCE OF HAZELNUT PASTE ON THE SENSORY PROPERTIES AND SHELF-LIFE OF DARK CHOCOLATE. Journal of Sensory Studies, 2004, 19, 133-148.	0.8	20
81	Rejection Thresholds in Solid Chocolate-Flavored Compound Coating. Journal of Food Science, 2012, 77, S390-S393.	1.5	20
82	Microstructure of mixed gelatin-egg white gels: impact on rheology and application to microparticulation. Biotechnology Progress, 1991, 7, 283-287.	1.3	19
83	Ultrasonic determination of the effect of shear on lipid crystallization. JAOCS, Journal of the American Oil Chemists' Society, 2000, 77, 157-162.	0.8	18
84	Fabrication of κ-Carrageenan Fibers by Wet Spinning: Spinning Parameters. Materials, 2011, 4, 1805-1817.	1.3	18
85	Explaining tolerance for bitterness in chocolate ice cream using solid chocolate preferences. Journal of Dairy Science, 2013, 96, 4938-4944.	1.4	18
86	Firmness Perception Influences Women's Preferences for Vaginal Suppositories. Pharmaceutics, 2014, 6, 512-529.	2.0	18
87	Characterization of amylose inclusion complexes using electron paramagnetic resonance spectroscopy. Food Hydrocolloids, 2018, 82, 82-88.	5.6	18
88	Predicting the Dynamic Elastic Modulus of Mixed Gelatin-Egg White Gels. Journal of Food Science, 1989, 54, 430-436.	1.5	17
89	Determination of Cross-link Density in Egg White Gels from Stress Relaxation Data. Journal of Food Science, 1989, 54, 218-219.	1.5	17
90	Effect of Nutrient Supplementation on Flavor, Quality, and Shelf Life of the Cultivated Mushroom, <i>Agaricus Bisporus</i> . Mycologia, 1991, 83, 142-149.	0.8	17

#	Article	IF	CITATIONS
91	Maximizing overall liking results in a superior product to minimizing deviations from ideal ratings: An optimization case study with coffee-flavored milk. Food Quality and Preference, 2015, 42, 27-36.	2.3	17
92	Polymorphic transitions of V-type amylose upon hydration and dehydration. Food Hydrocolloids, 2022, 125, 107372.	5.6	17
93	Crystal and molecular structure of V-amylose complexed with ibuprofen. Carbohydrate Polymers, 2021, 261, 117885.	5.1	16
94	Determination of Mass Diffusivity of Simple Sugars in Water by the Rotating Disk Method. Journal of Food Science, 1987, 52, 501-502.	1.5	15
95	Biosynthesis of 1-octen-3-ol and 10-oxo-trans-8-decenoic acid using a crude homogenate of Agaricus bisporus. Process Biochemistry, 2005, 40, 131-137.	1.8	15
96	Drivers of Vaginal Drug Delivery System Acceptability from Internet-Based Conjoint Analysis. PLoS ONE, 2016, 11, e0150896.	1.1	15
97	Thermal Conductivity of Liquid Foods by the Thermal Comparator Method. Journal of Food Science, 1985, 50, 1458-1462.	1.5	13
98	FLAVOR MODIFICATION OF MILK CHOCOLATE BY CONCHING IN A TWIN-SCREW, CO-ROTATING, CONTINUOUS MIXER. Journal of Sensory Studies, 1995, 10, 369-380.	0.8	13
99	Structural and physical effects of aroma compound binding to native starch granules. Starch/Staerke, 2012, 64, 461-469.	1.1	13
100	Degree of free fatty acid saturation influences chocolate rejection in human assessors. Chemical Senses, 2017, 42, 161-166.	1.1	13
101	Toughness, particle size and chemical composition of meadow fescue (Festuca pratensis Hud.) herbage as affected by time of day. Animal Feed Science and Technology, 2009, 151, 330-336.	1.1	12
102	Investigating Mixture Interactions of Astringent Stimuli Using the Isobole Approach. Chemical Senses, 2016, 41, bjw064.	1.1	12
103	Effect of Liquid Smoke on the Growth of Lactic Acid Starter Cultures used to Manufacture Fermented Sausage. Journal of Food Science, 1982, 47, 2074-2075.	1.5	10
104	Potential sources of error in the calorimetric evaluation of amylose content of starches. Carbohydrate Polymers, 2007, 68, 465-471.	5.1	10
105	Optimizing Detection of Heat-Injured Listeria monocytogenes in Pasteurized Milk. Journal of Food Protection, 2001, 64, 1000-1011.	0.8	9
106	GRINDING SPRAY-DRIED MILK POWDER NEAR the GLASS TRANSITION TEMPERATURE. Journal of Food Process Engineering, 2003, 26, 149-160.	1.5	9
107	Molecular Entanglement and Electrospinnability of Biopolymers. Journal of Visualized Experiments, 2014, , e51933.	0.2	9
108	Design aspects of vaginal applicators that influence acceptance among target users. Scientific Reports, 2021, 11, 9802.	1.6	9

#	Article	IF	CITATIONS
109	Modelling Diffusion of Moisture During Stoving of Starch-molded Confections. Food and Bioproducts Processing, 2004, 82, 60-72.	1.8	8
110	Optimization and modeling of teff-maize-rice based formulation by simplex lattice mixture design for the preparation of brighter and acceptable injera. Cogent Food and Agriculture, 2018, 4, 1443381.	0.6	8
111	Relationships between Perceptual Attributes and Rheology in Over-the-Counter Vaginal Products: A Potential Tool for Microbicide Development. PLoS ONE, 2014, 9, e105614.	1.1	8
112	Effect of temperature and electrolytes on the viscosity of aqueous dispersions of mustard seed (Sinapsis alba) mucilage. Food Hydrocolloids, 1990, 4, 161-166.	5.6	7
113	Qualitative exploration of intrinsic and extrinsic factors that influence acceptability of semisoft vaginal suppositories. BMC Women's Health, 2018, 18, 170.	0.8	7
114	Flavor and mouthfeel of pseudo ocoa liquor: Effects of polyphenols, fat content, and training method. Journal of Sensory Studies, 2020, 35, e12541.	0.8	7
115	MECHANICAL PROPERTIES OF AERATED CONFECTIONERY. Journal of Texture Studies, 2003, 34, 437-448.	1.1	6
116	Plasticization and conglutination improve the tensile strength of electrospun starch fiber mats. Food Hydrocolloids, 2018, 83, 393-396.	5.6	6
117	Enzymeâ€Resistant Starch Spherulites. Starch/Staerke, 2020, 72, 1900217.	1.1	6
118	Phase Behavior of the ι-Carrageenan/Maltodextrin/Water System at Different Potassium Chloride Concentrations and Temperatures. Food Biophysics, 2009, 4, 119-125.	1.4	5
119	Characterization of macromolecular orientation in κ-carrageenan fibers using polarized Fourier-transform infrared spectroscopy. Vibrational Spectroscopy, 2018, 94, 61-65.	1.2	5
120	Synergistic and antagonistic ingredient interactions as a sugar reduction strategy in chocolate milk. Journal of Sensory Studies, 2022, 37, .	0.8	5
121	Salivary α-amylase activity and flow rate explain differences in temporal flavor perception in a chewing gum matrix comprising starch-limonene inclusion complexes. Food Research International, 2022, 158, 111573.	2.9	4
122	PREPARATION, PURIFICATION AND IDENTIFICATION OF 10-OXO-TRANS-8-DECENOIC ACID FROM THE CULTIVATED MUSHROOM, AGARICUS BISPORUS. Journal of Food Biochemistry, 1992, 16, 371-388.	1.2	3
123	Effect of Sucrose on Physical Properties of Sprayâ€Dried Whole Milk Powder. Journal of Food Science, 2008, 73, E431-8.	1.5	3
124	Innovative sensory methods to access acceptability of mixed polymer semisoft ovules for microbicide applications. Drug Delivery and Translational Research, 2016, 6, 551-564.	3.0	3
125	Using sensory and consumer science in drug delivery system optimization: mixed methods in women of color as a case study. Food Quality and Preference, 2019, 73, 293-302.	2.3	3
126	Elucidating differences in phenolic profile between tef (<i>Eragrostis tef</i>) varieties using multivariate analyses. Cereal Chemistry, 2020, 97, 53-64.	1.1	3

#	Article	IF	CITATIONS
127	Assessment of Midline Lingual Point-Pressure Somatosensation Using Von Frey Hair Monofilaments. Journal of Visualized Experiments, 2020, , .	0.2	2
128	Chocolate not necessarily healthier or tastier. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6318-E6318.	3.3	1