Sergey Maslennikov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/425414/publications.pdf

Version: 2024-02-01

1684188 1720034 31 73 5 7 citations g-index h-index papers 31 31 31 18 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Penning Ion Source Discharge Modes for Pulsed and Continuous Power Supplies. Technical Physics, 2019, 64, 1290-1297.	0.7	12
2	Electrothermal technology of coating. IEEE Transactions on Magnetics, 2003, 39, 314-318.	2.1	9
3	Magnetic field design for miniature pulse Penning ion source. Plasma Sources Science and Technology, 2020, 29, 025001.	3.1	8
4	Increasing the Efficiency of Ion Sources of Vacuum Neutron Tubes. Atomic Energy, 2015, 118, 354-359.	0.4	7
5	Characteristics of miniature pulsed penning ion source: Experiment and PIC simulation. Review of Scientific Instruments, 2019, 90, 123310.	1.3	6
6	High-Voltage Solid State Switches for Grid Modulators of High-Power Microwave Devices. Journal of Communications Technology and Electronics, 2018, 63, 71-74.	0.5	5
7	Solid-state switch unit for modulators of power microwave devices. , 2016, , .		4
8	Solid-State Modulator for High-Power Microwave Devices with Grid Control. Journal of Communications Technology and Electronics, 2019, 64, 64-68.	0.5	4
9	Acceleration of microparticles in electrothermal launcher with multigap scheme of discharge unit. IEEE Transactions on Magnetics, 2001, 37, 188-193.	2.1	3
10	Fundamental limitations on the use of field-emission structures as cathodes of high-power vacuum microwave pulse devices. Journal of Communications Technology and Electronics, 2015, 60, 1020-1026.	0.5	3
11	A trigger generator for controlling a high-current triggered vacuum switch. Instruments and Experimental Techniques, 2016, 59, 239-244.	0.5	3
12	A high-voltage nanosecond pulse generator for exciting diffuse gas discharges at atmospheric pressure. Instruments and Experimental Techniques, 2009, 52, 703-706.	0.5	2
13	Investigation of the Amplitude-Time Characteristics of a Penning Discharge in Miniature Ion Sources. Atomic Energy, 2019, 127, 45-50.	0.4	2
14	Measuring parameters of volume nanosecond pulsed discharge in air at atmospheric pressure. Technical Physics Letters, 2012, 38, 793-796.	0.7	1
15	Switching regimes of compact triggered vacuum gaps. Journal of Communications Technology and Electronics, 2017, 62, 178-184.	0.5	1
16	Experimental Investigation of Ion Sources of Gas-Filled Neutron Tubes. Atomic Energy, 2017, 121, 360-364.	0.4	1
17	Dynamics of plasma and ion flux in a vacuum neutron tube. High Temperature, 2017, 55, 672-677.	1.0	1
18	Investigation of Discharge Generation Regimes in Penning Ion Sources Under Pulse-Packet Control. Atomic Energy, 2021, 131, 97-101.	0.4	1

#	Article	IF	CITATIONS
19	PVDF piezofilm transducer for measuring the parameters of shock waves in focused systems. Measurement Techniques, 1995, 38, 693-696.	0.6	0
20	Title is missing!. Instruments and Experimental Techniques, 2000, 43, 846-851.	0.5	O
21	An Experimental Complex for Studying the Pulse-Periodic Diffuse Discharge Used for the Sterilization of Medical Instruments. Instruments and Experimental Techniques, 2004, 47, 521-525.	0.5	O
22	Study of Generation of Atmospheric Pulse-Periodic Diffuse Discharge Plasma to be Used for Sterilization and Decontamination. , 2007, , .		0
23	Performance Improvement of Pulse Neutron Generators. Atomic Energy, 2015, 118, 351-353.	0.4	O
24	Turn-on dynamics of small-sized triggered vacuum switches at fast rising of commutated current. , 2016, , .		0
25	An experimental study of commutation characteristics of small-sized triggered vacuum switches. , 2016, , .		0
26	Current stability of multilayer heterogeneous carbon-containing field-emission cathode–grid devices. Journal of Communications Technology and Electronics, 2016, 61, 1139-1143.	0.5	0
27	Development of High-Power Low-Voltage C-Band Klystron for Economic Application. Physics of Atomic Nuclei, 2018, 81, 1622-1626.	0.4	0
28	Solid-state grid modulator for power vacuum microwave devices. , 2018, , .		0
29	Effect of external electrical circuits on the operating conditions of high-power multiple-beam Klystron collectors. , 2018, , .		0
30	Electron-Optical System with Planar-Arranged Coarse-Structured Field Emission Cathodes. , 2019, , .		0
31	Plasma Behavior in E×H Pulse Discharge. , 2020, , .		O