
Michael C Levin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4253924/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Autoimmunity to a ribonucleoprotein drives neuron loss in multiple sclerosis models. Neurobiology of Disease, 2022, 170, 105775.	4.4	6
2	Multiple Sclerosis-Associated hnRNPA1 Mutations Alter hnRNPA1 Dynamics and Influence Stress Granule Formation. International Journal of Molecular Sciences, 2021, 22, 2909.	4.1	13
3	A Comprehensive Analysis of the Role of hnRNP A1 Function and Dysfunction in the Pathogenesis of Neurodegenerative Disease. Frontiers in Molecular Biosciences, 2021, 8, 659610.	3.5	58
4	Diagnostic Dilemma: An Atypical Case of Astrocytoma in a Patient with Relapsing–Remitting Multiple Sclerosis. Neurology International, 2021, 13, 240-251.	2.8	1
5	A Descriptive Correlational Study to Evaluate Three Measures of Assessing Upper Extremity Function in Individuals with Multiple Sclerosis. Multiple Sclerosis International, 2021, 2021, 1-8.	0.8	0
6	A Tripartite Knowledge Translation Program: Innovative Patient-Centered Approach to Clinical Research Participation for Individuals with Multiple Sclerosis. Multiple Sclerosis International, 2021, 2021, 1-7.	0.8	0
7	hnRNP A/B Proteins: An Encyclopedic Assessment of Their Roles in Homeostasis and Disease. Biology, 2021, 10, 712.	2.8	18
8	Pro-Inflammatory Cytokines and Antibodies Induce hnRNP A1 Dysfunction in Mouse Primary Cortical Neurons. Brain Sciences, 2021, 11, 1282.	2.3	6
9	Magnetic Resonance Imaging of Spinal Cord Lesions in Patients with Multiple Sclerosis in Saskatchewan, Canada. International Journal of MS Care, 2021, 23, 47-52.	1.0	2
10	Knock-Down of Heterogeneous Nuclear Ribonucleoprotein A1 Results in Neurite Damage, Altered Stress Granule Biology, and Cellular Toxicity in Differentiated Neuronal Cells. ENeuro, 2021, 8, ENEURO.0350-21.2021.	1.9	9
11	Antibodies to the RNA binding protein heterogeneous nuclear ribonucleoprotein A1 contribute to neuronal cell loss in an animal model of multiple sclerosis. Journal of Comparative Neurology, 2020, 528, 1704-1724.	1.6	15
12	Dysfunctional RNAâ€binding protein biology and neurodegeneration in experimental autoimmune encephalomyelitis in female mice. Journal of Neuroscience Research, 2020, 98, 704-717.	2.9	19
13	The Potential Contribution of Dysfunctional RNA-Binding Proteins to the Pathogenesis of Neurodegeneration in Multiple Sclerosis and Relevant Models. International Journal of Molecular Sciences, 2020, 21, 4571.	4.1	13
14	Cover Image, Volume 528, Issue 10. Journal of Comparative Neurology, 2020, 528, C1.	1.6	0
15	Treatment Optimization in Multiple Sclerosis: Canadian MS Working Group Recommendations. Canadian Journal of Neurological Sciences, 2020, 47, 437-455.	0.5	63
16	Neuronal RNAâ€binding protein dysfunction in multiple sclerosis cortex. Annals of Clinical and Translational Neurology, 2020, 7, 1214-1224.	3.7	25
17	The Dilemma of When to Stop Disease-Modifying Therapy in Multiple Sclerosis. International Journal of MS Care, 2020, 22, 75-84.	1.0	5
18	Localization of near-infrared labeled antibodies to the central nervous system in experimental autoimmune encephalomyelitis. PLoS ONE, 2019, 14, e0212357.	2.5	6

MICHAEL C LEVIN

#	Article	IF	CITATIONS
19	Individualised behaviour change strategies for physical activity in multiple sclerosis (IPAC-MS): protocol for a randomised controlled trial. Trials, 2019, 20, 664.	1.6	2
20	Stabilization Without Rituximab After Disease Activation in an Alemtuzumab-Treated Patient with Multiple Sclerosis and a Literature Overview. International Journal of MS Care, 2019, 21, 125-128.	1.0	0
21	Dysfunctional RNA binding proteins and stress granules in multiple sclerosis. Journal of Neuroimmunology, 2018, 324, 149-156.	2.3	32
22	Autoantibodies to heterogeneous nuclear ribonuclear protein A1 (hnRNPA1) cause altered â€~ribostasis' and neurodegeneration; the legacy of HAM/TSP as a model of progressive multiple sclerosis. Journal of Neuroimmunology, 2017, 304, 56-62.	2.3	10
23	Contribution of the Degeneration of the Neuro-Axonal Unit to the Pathogenesis of Multiple Sclerosis. Brain Sciences, 2017, 7, 69.	2.3	19
24	Antibodies to the RNA Binding Protein Heterogeneous Nuclear Ribonucleoprotein A1 Colocalize to Stress Granules Resulting in Altered RNA and Protein Levels in a Model of Neurodegeneration in Multiple Sclerosis. Journal of Clinical & Cellular Immunology, 2016, 07, 402.	1.5	22
25	Antibodies to the RNA-binding protein hnRNP A1 contribute to neurodegeneration in a model of central nervous system autoimmune inflammatory disease. Journal of Neuroinflammation, 2016, 13, 178.	7.2	30
26	Effects of Specialty Pharmacy Care on Health Outcomes in Multiple Sclerosis. American Health and Drug Benefits, 2016, 9, 420-429.	0.5	6
27	Importance of Apolipoprotein A-I in Multiple Sclerosis. Frontiers in Pharmacology, 2015, 6, 278.	3.5	17
28	Neurodegeneration in multiple sclerosis involves multiple pathogenic mechanisms. Degenerative Neurological and Neuromuscular Disease, 2014, 4, 49.	1.3	26
29	Radial contrast enhancement on brain magnetic resonance imaging could be diagnostic of primary anglitis of the central nervous system: a case report and review of the literature. Journal of Medical Case Reports, 2014, 8, 26.	0.8	10
30	A role for Apolipoprotein A-I in the pathogenesis of multiple sclerosis. Journal of Neuroimmunology, 2014, 277, 176-185.	2.3	20
31	Novel somatic single nucleotide variants within the RNA binding protein hnRNP A1 in multiple sclerosis patients. F1000Research, 2014, 3, 132.	1.6	11
32	Novel somatic single nucleotide variants within the RNA binding protein hnRNP A1 in multiple sclerosis patients. F1000Research, 2014, 3, 132.	1.6	18
33	Developing a Therapeutic Plan for Treating MS. Journal of Clinical Psychiatry, 2014, 75, e34-e34.	2.2	4
34	Diagnosing MS. Journal of Clinical Psychiatry, 2014, 75, e21.	2.2	0
35	<scp>LC</scp> â€ <scp>MS</scp> / <scp>MS</scp> identification of the one arbon cycle metabolites in human plasma. Electrophoresis, 2013, 34, 1710-1716.	2.4	15
36	Autoantibodies to Non-myelin Antigens as Contributors to the Pathogenesis of Multiple Sclerosis. Journal of Clinical & Cellular Immunology, 2013, 04, .	1.5	30

MICHAEL C LEVIN

#	Article	IF	CITATIONS
37	Pathogenic mechanisms of neurodegeneration based on the phenotypic expression of progressive forms of immune-mediated neurologic disease. Degenerative Neurological and Neuromuscular Disease, 2012, 2, 175.	1.3	10
38	Antibody Transfection into Neurons as a Tool to Study Disease Pathogenesis. Journal of Visualized Experiments, 2012, , .	0.3	10
39	Cross-Reactive Antibodies to Target Proteins are Dependent upon Oligomannose Glycosylated Epitopes in HTLV-1 Associated Neurological Disease. Journal of Clinical Immunology, 2012, 32, 736-745.	3.8	3
40	A potential link between autoimmunity and neurodegeneration in immune-mediated neurological disease. Journal of Neuroimmunology, 2011, 235, 56-69.	2.3	48
41	The natural history of West Nile virus infection presenting with West Nile virus meningoencephalitis in a man with a prolonged illness: a case report. Journal of Medical Case Reports, 2011, 5, 204.	0.8	4
42	The role of methionine cycle metabolites in autoimmune neurodegenerative diseases. FASEB Journal, 2010, 24, 891.2.	0.5	0
43	Molecular mimicry in neurological disease: what is the evidence?. Cellular and Molecular Life Sciences, 2008, 65, 1161-1175.	5.4	12
44	Post-translational glycosylation of target proteins implicate molecular mimicry in the pathogenesis of HTLV-1 associated neurological disease. Journal of Neuroimmunology, 2008, 204, 140-148.	2.3	16
45	Autoantibodies that recognize functional domains of hnRNPA1 implicate molecular mimicry in the pathogenesis of neurological disease. Neuroscience Letters, 2006, 401, 188-193.	2.1	33
46	Autoimmunity to heterogeneous nuclear ribonucleoproteins in neurological disease. Annals of Neurology, 2005, 57, 931-931.	5.3	1
47	Proteomic analysis of phosphotyrosyl proteins in morphine-dependent rat brains. Molecular Brain Research, 2005, 133, 58-70.	2.3	74
48	Clinical Stabilization of a Multiple Sclerosis Patient After Tonsillectomy. International Journal of MS Care, 2005, 7, 148-150.	1.0	0
49	Molecular mimicry: Cross-reactive antibodies from patients with immune-mediated neurologic disease inhibit neuronal firing. Journal of Neuroscience Research, 2004, 77, 82-89.	2.9	46
50	Proteomic analysis of phosphotyrosyl proteins in the rat brain: Effect of butorphanol dependence. Journal of Neuroscience Research, 2004, 77, 867-877.	2.9	20
51	A role for hypertrophic astrocytes and astrocyte precursors in a case of rapidly progressive multiple sclerosis Journal, 2003, 9, 332-341.	3.0	24
52	Crossâ€Reactivity between Immunodominant Human T Lymphotropic Virus Type Itaxand Neurons: Implications for Molecular Mimicry. Journal of Infectious Diseases, 2002, 186, 1514-1517.	4.0	47
53	Autoimmunity due to molecular mimicry as a cause of neurological disease. Nature Medicine, 2002, 8, 509-513.	30.7	241
54	HTLV-1 and Its Neurological Complications. Neurologist, 2001, 7, 271-278.	0.7	19

MICHAEL C LEVIN

#	Article	IF	CITATIONS
55	Localization of retrovirus in the central nervous system of a patient co-infected with HTLV-1 and HIV with HAM/TSP and HIV-associated dementia. Journal of NeuroVirology, 2001, 7, 61-65.	2.1	8
56	Neuronal molecular mimicry in immuneâ€mediated neurologic disease. Annals of Neurology, 1998, 44, 87-98.	5.3	70
57	Reduction in HTLV″ proviral load and spontaneous lymphoproliferation in HTLV″–associated myelopathy/tropical spastic paraparesis patients treated with humanized antiâ€ŧac. Annals of Neurology, 1998, 44, 942-947.	5.3	70
58	Immunologic Analysis of a Spinal Cord–Biopsy Specimen from a Patient with Human T-Cell Lymphotropic Virus Type I–Associated Neurologic Disease. New England Journal of Medicine, 1997, 336, 839-845.	27.0	75
59	HTLV-I associated myelopathy/tropical spastic paraparesis (HAM/TSP): A chronic progressive neurologic disease associated with immunologically mediated damage to the central nervous system. Journal of NeuroVirology, 1997, 3, 126-138.	2.1	85
60	Extensive Latent Retroviral Infection in Bone Marrow of Patients With HTLV-l–Associated Neurologic Disease. Blood, 1997, 89, 346-347.	1.4	24
61	Cellular and Humoral Immune Responses Associated with HTLV-I Associated Myelopathy/Tropical Spastic Paraparesis. Annals of the New York Academy of Sciences, 1997, 835, 142-152.	3.8	10
62	Detection of HTLV-I in peripheral blood lymphocytes from patients with chronic HTLV-I-associated myelopathy/tropical spastic paraparesis and asymptomatic carriers by PCR-in situ hybridization. Journal of Biomedical Science, 1997, 4, 54-60.	7.0	1
63	Tumor necrosis factor alpha expression in the spinal cord of human T-cell lymphotrophic virus type I associated myelopathy/tropical spastic paraparesis patients. Journal of NeuroVirology, 1996, 2, 323-329.	2.1	13
64	Detection of human T-lymphotropic virus type I (HTLV-I) tax RNA in the central nervous system of HTLV-I-associated myelopathy/tropical spastic paraparesis patients by in situ hybridization. Annals of Neurology, 1995, 37, 167-175.	5.3	174
65	Neuropeptide co-expression in the magnocellular neurosecretory system of the female rat: Evidence for differential modulation by estrogen. Neuroscience, 1993, 54, 1001-1018.	2.3	68
66	Estrone sulfate stimulates growth of nitrosomethylurea-induced breast carcinomain vivo in the rat. International Journal of Cancer, 1990, 46, 73-78.	5.1	29
67	Peroxidatic catecholestrogen production by human breast cancer tissue in vitro. The Journal of Steroid Biochemistry, 1987, 28, 513-520.	1.1	22
68	Organization of galanin-immunoreactive inputs to the paraventricular nucleus with special reference to their relationship to catecholaminergic afferents. Journal of Comparative Neurology, 1987, 261, 562-582.	1.6	172