Nicolas Villandier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4253540/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Photodegradation of tebuconazole mediated by a novel hybrid phenalenone based photosensitizer. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 408, 113124.	3.9	4
2	Photodegradation of tebuconazole in a fluidized bed reactor mediated by phenalenone supported on sand. Chemical Engineering Journal, 2021, 410, 128332.	12.7	5
3	Photophysical and Antibacterial Properties of Porphyrins Encapsulated inside Acetylated Lignin Nanoparticles. Antibiotics, 2021, 10, 513.	3.7	17
4	Development of Phenalenone-Triazolium Salt Derivatives for aPDT: Synthesis and Antibacterial Screening. Antibiotics, 2021, 10, 626.	3.7	10
5	Prospects for More Efficient Multi-Photon Absorption Photosensitizers Exhibiting Both Reactive Oxygen Species Generation and Luminescence. Molecules, 2021, 26, 6323.	3.8	10
6	Porphyrin-Loaded Lignin Nanoparticles Against Bacteria: A Photodynamic Antimicrobial Chemotherapy Application. Frontiers in Microbiology, 2020, 11, 606185.	3.5	32
7	Acetylated lignin nanoparticles as a possible vehicle for photosensitizing molecules. Nanoscale Advances, 2020, 2, 5648-5658.	4.6	17
8	Conjugating biomaterials with photosensitizes: advancers and perspectives for photodynamic antimicrobial chemotherapy. Photochemical and Photobiological Sciences, 2020, 19, 445-461.	2.9	72
9	Adsorption of fulvic and humic like acids on surfaces of clays: Relation with SUVA index and acidity. Applied Clay Science, 2018, 154, 83-90.	5.2	14
10	Acetylated Lignins: A Potential Bio ourced Photosensitizer. ChemistrySelect, 2018, 3, 5512-5516.	1.5	20
11	Removal of cesium ion from contaminated water: Improvement of Douglas fir bark biosorption by a combination of nickel hexacyanoferrate impregnation and TEMPO oxidation. Ecological Engineering, 2017, 100, 186-193.	3.6	20
12	From glycerol to lactic acid under inert conditions in the presence of platinum-based catalysts: The influence of support. Catalysis Today, 2015, 257, 267-273.	4.4	61
13	Binding and setting of kaolin based materials with natural organic acids. Applied Clay Science, 2015, 114, 609-616.	5.2	6
14	Interfacial reactions between humic-like substances and lateritic clay: Application to the preparation of "geomimetic―materials. Journal of Colloid and Interface Science, 2014, 434, 208-217.	9.4	9
15	Palladium complexes grafted onto mesoporous silica catalysed the double carbonylation of aryl iodides with amines to give \hat{I}_{\pm} -ketoamides. Catalysis Science and Technology, 2012, 2, 1886.	4.1	42
16	Transformation of Cellulose into Biodegradable Alkyl Glycosides by Following Two Different Chemical Routes. ChemSusChem, 2011, 4, 508-513.	6.8	51
17	Production of Highâ€Quality Diesel from Biomass Waste Products. Angewandte Chemie - International Edition, 2011, 50, 2375-2378.	13.8	353
18	One pot catalytic conversion of cellulose into biodegradable surfactants. Chemical Communications, 2010, 46, 4408.	4.1	94

NICOLAS VILLANDIER

#	Article	IF	CITATIONS
19	Glycerol as a cheap, safe and sustainable solvent for the catalytic and regioselective β,β-diarylation of acrylates over palladium nanoparticles. Green Chemistry, 2010, 12, 804.	9.0	61
20	Efficient oxidative modification of polysaccharides in water using H2O2 activated by iron sulfophthalocyanine. Carbohydrate Polymers, 2009, 78, 938-944.	10.2	25
21	Rational Design of Sugarâ€Basedâ€Surfactant Combined Catalysts for Promoting Glycerol as a Solvent. Chemistry - A European Journal, 2008, 14, 10196-10200.	3.3	50
22	Selective synthesis of amphiphilic hydroxyalkylethers of disaccharides over solid basic catalysts. Journal of Molecular Catalysis A, 2006, 259, 67-77.	4.8	13