Svetlana Minakhina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4253375/publications.pdf

Version: 2024-02-01

840119 1125271 14 765 11 13 citations h-index g-index papers 14 14 14 1169 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Thyroid hormone receptor phosphorylation regulates acute fasting-induced suppression of the hypothalamic–pituitary–thyroid axis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	11
2	A Direct Comparison of Thyroid Hormone Receptor Protein Levels in Mice Provides Unexpected Insights into Thyroid Hormone Action. Thyroid, 2020, 30, 1193-1204.	2.4	37
3	SAT-435 A Direct Comparison of Thyroid Hormone Receptor (THR) Protein Levels in Mice Provides Unexpected Insights into TH Action. Journal of the Endocrine Society, 2020, 4, .	0.1	0
4	Tet protein function during Drosophila development. PLoS ONE, 2018, 13, e0190367.	1.1	30
5	Naturally Occurring Amino Acids in Helix 10 of the Thyroid Hormone Receptor Mediate Isoform-Specific TH Gene Regulation. Endocrinology, 2017, 158, 3067-3078.	1.4	4
6	Transcriptome-wide distribution and function of RNA hydroxymethylcytosine. Science, 2016, 351, 282-285.	6.0	351
7	Zfrp8 forms a complex with fragile-X mental retardation protein and regulates its localization and function. Developmental Biology, 2016, 410, 202-212.	0.9	13
8	<i>Zfrp8/PDCD2</i> is required in ovarian stem cells and interacts with the piRNA pathway machinery. Development (Cambridge), 2014, 141, 259-268.	1.2	21
9	Hematopoietic stem cells in <i>Drosophila</i> . Development (Cambridge), 2010, 137, 27-31.	1.2	72
10	Zfrp8, the Drosophila ortholog of PDCD2, functions in lymph gland development and controls cell proliferation. Development (Cambridge), 2007, 134, 2387-2396.	1.2	44
11	Melanotic Mutants in Drosophila: Pathways and Phenotypes. Genetics, 2006, 174, 253-263.	1.2	108
12	Crosstalk between the actin cytoskeleton and Ran-mediated nuclear transport. BMC Cell Biology, 2005, 6, 32.	3.0	35
13	Axes formation and RNA localization. Current Opinion in Genetics and Development, 2005, 15, 416-421.	1.5	19
14	Tamo selectively modulates nuclear import in Drosophila. Genes To Cells, 2003, 8, 299-310.	0.5	20