List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4253343/publications.pdf Version: 2024-02-01

ΙΙΔΝΙ ΟΙ SUN

#	Article	IF	CITATIONS
1	<scp>Dynamicalâ€statistical</scp> longâ€term prediction for tropical cyclone landfalls in East Asia. International Journal of Climatology, 2022, 42, 2586-2600.	3.5	2
2	Impacts of North Atlantic sea surface temperature on the predominant modes of spring precipitation monthly evolution over Northeast China. Climate Dynamics, 2022, 58, 1383-1401.	3.8	7
3	Decadal change of extreme consecutive dry days in spring over the middle and lower reaches of the Yangtze River around the early 2000s: The synergistic effect of mega-El Niño/Southern Oscillation, Atlantic Multidecadal Oscillation, and Arctic sea ice. Atmospheric Research, 2022, 266, 105936.	4.1	11
4	Future changes in daily snowfall events over China based on CMIP6 models. Atmospheric and Oceanic Science Letters, 2022, 15, 100137.	1.3	1
5	Moisture Sources and Transport for Extreme Precipitation Over Henan in July 2021. Geophysical Research Letters, 2022, 49, .	4.0	65
6	Causes of Interannual Variability of Summer Precipitation Intraseasonal Oscillation Intensity over Southwest China. Journal of Climate, 2022, 35, 3705-3723.	3.2	8
7	Strengthened influence of the East Asian trough on spring extreme precipitation variability over eastern Southwest China after the late 1980s. Atmospheric and Oceanic Science Letters, 2022, 15, 100191.	1.3	3
8	Interannual Variations in Summer Extreme Precipitation Frequency over Northern Asia and Related Atmospheric Circulation Patterns. Journal of Hydrometeorology, 2022, 23, 619-636.	1.9	5
9	Impacts of a Tripolar Sea Surface Temperature Pattern Over Tropicalâ€North Pacific on Interannual Variations of Spring Extreme Consecutive Dry Days Over Southern China. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	2
10	A hybrid statisticalâ€dynamical prediction scheme for summer monthly precipitation over Northeast China. Meteorological Applications, 2022, 29, .	2.1	4
11	Model assessments and future projections of spring climate extremes in China based on <scp>CMIP6</scp> models. International Journal of Climatology, 2022, 42, 4601-4620.	3.5	7
12	Increases of extreme heat-humidity days endanger future populations living in China. Environmental Research Letters, 2022, 17, 064013.	5.2	13
13	Enhancement of the relationship between spring extreme precipitation over Southwest China and preceding winter sea surface temperature anomalies over the South Indian Ocean after the late 1980s. International Journal of Climatology, 2022, 42, 8539-8551.	3.5	1
14	Evaluation and ensemble projection of extreme high and low temperature events in China from four dynamical downscaling simulations. International Journal of Climatology, 2021, 41, E1252.	3.5	7
15	Anthropogenic influence has increased climate extreme occurrence over China. Science Bulletin, 2021, 66, 749-752.	9.0	28
16	Conditional impact of boreal autumn North Atlantic SST anomaly on winter tropospheric Asian polar vortex. Climate Dynamics, 2021, 56, 855-871.	3.8	9
17	Connection between the November snow cover over northeast Asia and the following January precipitation in southern China. International Journal of Climatology, 2021, 41, 2553-2567.	3.5	5
18	Characteristics of spring consecutive dry days with different durations across China based on the objective zoning approach. Atmospheric Science Letters, 2021, 22, e1035.	1.9	9

#	Article	IF	CITATIONS
19	Enhanced Relationship between Central Tropical Pacific Sea Surface Temperature and Eurasian Surface Air Temperature during Boreal Summers. Journal of Climate, 2021, , 1-68.	3.2	4
20	New statistical prediction scheme for monthly precipitation variability in the rainy season over northeastern China. International Journal of Climatology, 2021, 41, 5805-5819.	3.5	8
21	Local changes in snow depth dominate the evolving pattern of elevation-dependent warming on the Tibetan Plateau. Science Bulletin, 2021, 66, 1146-1150.	9.0	49
22	Synopticâ€Scale Circulation Precursors of Extreme Precipitation Events Over Southwest China During the Rainy Season. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035134.	3.3	14
23	Influence of Strong Tropical Volcanic Eruptions on Daily Temperature and Precipitation Extremes Across the Globe. Journal of Meteorological Research, 2021, 35, 428-443.	2.4	5
24	Footprints of Pacific Decadal Oscillation in the interdecadal variation of Consecutive Cloudy–Rainy Events in Southern China. Atmospheric Research, 2021, 257, 105609.	4.1	10
25	Significant Increase of the Global Population Exposure to Increased Precipitation Extremes in the Future. Earth's Future, 2021, 9, e2020EF001941.	6.3	32
26	A skillful prediction scheme for April precipitation over central East China. Atmospheric Research, 2021, 261, 105737.	4.1	2
27	Impact of October Snow Cover in Central Siberia on the Following Spring Extreme Precipitation Frequency in Southern China. Frontiers in Earth Science, 2021, 9, .	1.8	0
28	Role of autumn Arctic Sea ice in the subsequent summer precipitation variability over East Asia. International Journal of Climatology, 2020, 40, 706-722.	3.5	16
29	Satellite data reveal southwestern Tibetan plateau cooling since 2001 due to snowâ€albedo feedback. International Journal of Climatology, 2020, 40, 1644-1655.	3.5	31
30	Potential contribution of winter dominant atmospheric mode over the midâ€latitude Eurasia to the prediction of subsequent spring Arctic Oscillation. International Journal of Climatology, 2020, 40, 2953-2963.	3.5	3
31	Distinct impact of the Pacific multiâ€decadal oscillation on precipitation in Northeast China during April in different Pacific multiâ€decadal oscillation phases. International Journal of Climatology, 2020, 40, 1630-1643.	3.5	4
32	Changes in Lake Area in the Inner Mongolian Plateau under Climate Change: The Role of the Atlantic Multidecadal Oscillation and Arctic Sea Ice. Journal of Climate, 2020, 33, 1335-1349.	3.2	8
33	A Detectable Anthropogenic Shift Toward Intensified Summer Hot Drought Events Over Northeastern China. Earth and Space Science, 2020, 7, e2019EA000836.	2.6	25
34	Interdecadal Variation and Causes of Drought in Northeast China in Recent Decades. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032069.	3.3	14
35	Increased Role of Late Winter Sea Surface Temperature Variability Over Northern Tropical Atlantic in Spring Precipitation Prediction Over Northeast China. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033232.	3.3	9
36	Interdecadal variation in the frequency of extreme hot events in Northeast China and the possible mechanism. Atmospheric Research, 2020, 244, 105065.	4.1	23

#	Article	IF	CITATIONS
37	Potential factors modulating ENSO's influences on the East Asian trough in boreal winter. International Journal of Climatology, 2020, 40, 5066-5083.	3.5	20
38	Effects of AO on the interdecadal oscillating relationship between the ENSO and East Asian winter monsoon. International Journal of Climatology, 2020, 40, 4374-4383.	3.5	8
39	Projection of temperature change and extreme temperature events in the Lancang–Mekong River basin. Atmospheric and Oceanic Science Letters, 2020, 13, 16-25.	1.3	9
40	Increased population exposure to precipitation extremes under future warmer climates. Environmental Research Letters, 2020, 15, 034048.	5.2	41
41	Rainy season onset over Northeast China and the related atmospheric circulations. International Journal of Climatology, 2020, 40, 4750-4762.	3.5	7
42	Increased population exposure to precipitation extremes in China under global warming scenarios. Atmospheric and Oceanic Science Letters, 2020, 13, 63-70.	1.3	18
43	Comparison of CMIP6 and CMIP5 models in simulating climate extremes. Science Bulletin, 2020, 65, 1415-1418.	9.0	182
44	Anthropogenic influence would increase intense snowfall events over parts of the Northern Hemisphere in the future. Environmental Research Letters, 2020, 15, 114022.	5.2	19
45	Evaluation of High-Resolution Precipitation Products over Southwest China. Journal of Hydrometeorology, 2020, 21, 2691-2712.	1.9	18
46	Enhancement of the relationship between boreal summer precipitation over eastern China and Australia since the early 1980s. International Journal of Climatology, 2019, 39, 266-277.	3.5	4
47	Revisiting Recent Elevationâ€Dependent Warming on the Tibetan Plateau Using Satelliteâ€Based Data Sets. Journal of Geophysical Research D: Atmospheres, 2019, 124, 8511-8521.	3.3	54
48	Decadal change in the sea level pressure prediction skill over the Mediterranean region and its contribution to downstream surface air temperature prediction. Climate Dynamics, 2019, 53, 5187-5202.	3.8	0
49	The China Multi-Model Ensemble Prediction System and Its Application to Flood-Season Prediction in 2018. Journal of Meteorological Research, 2019, 33, 540-552.	2.4	32
50	The advanced South Asian monsoon onset accelerates lake expansion over the Tibetan Plateau. Science Bulletin, 2019, 64, 1486-1489.	9.0	22
51	Anthropogenic fine particulate matter pollution will be exacerbated in eastern China due to 21st century GHG warming. Atmospheric Chemistry and Physics, 2019, 19, 233-243.	4.9	30
52	Increased population exposure to extreme droughts in China due to 0.5 °C of additional warming. Environmental Research Letters, 2019, 14, 064011.	5.2	56
53	Combined impact of the Pacific–Japan pattern and Mediterranean–northern Eurasia pattern on East Asian summer temperatures. Atmospheric and Oceanic Science Letters, 2019, 12, 208-217	1.3	2
54	Increased Predictability of Spring Precipitation over Central East China around the Late 1970s. Journal of Climate, 2019, 32, 3599-3614.	3.2	6

#	Article	IF	CITATIONS
55	Modulation of the Kara Sea Ice Variation on the Ice Freeze-Up Time in Lake Qinghai. Journal of Climate, 2019, 32, 2553-2568.	3.2	12
56	Changes in the Interannual Summer Drought Variation Along With the Regime Shift Over Northwest China in the Late 1980s. Journal of Geophysical Research D: Atmospheres, 2019, 124, 2868-2881.	3.3	12
57	Regional Patterns of Extreme Precipitation and Urban Signatures in Metropolitan Areas. Journal of Geophysical Research D: Atmospheres, 2019, 124, 641-663.	3.3	33
58	Possible mechanism for the weakening relationship between Indian and central East Asian summer rainfall after the late 1970s: role of the mid-to-high-latitude atmospheric circulation. Meteorology and Atmospheric Physics, 2019, 131, 517-524.	2.0	4
59	Pacific multiâ€decadal oscillation modulates the effect of Arctic oscillation and El Niño southern oscillation on the East Asian winter monsoon. International Journal of Climatology, 2018, 38, 2808-2818.	3.5	11
60	Interannual Weakening of the Tropical Pacific Walker Circulation Due to Strong Tropical Volcanism. Advances in Atmospheric Sciences, 2018, 35, 645-658.	4.3	8
61	Enhancement of the spring East China precipitation response to tropical sea surface temperature variability. Climate Dynamics, 2018, 51, 3009-3021.	3.8	16
62	Projected changes in climate extremes in China in a 1.5 °C warmer world. International Journal of Climatology, 2018, 38, 3607-3617.	3.5	57
63	Can Barents Sea Ice Decline in Spring Enhance Summer Hot Drought Events over Northeastern China?. Journal of Climate, 2018, 31, 4705-4725.	3.2	98
64	Interdecadal variability of the large-scale extreme hot event frequency over the middle and lower reaches of the Yangtze River basin and its related atmospheric patterns. Atmospheric and Oceanic Science Letters, 2018, 11, 63-70.	1.3	16
65	Impacts of Autumnal Eurasian Snow Cover on Predominant Modes of Boreal Winter Surface Air Temperature Over Eurasia. Journal of Geophysical Research D: Atmospheres, 2018, 123, 10,076.	3.3	28
66	Revisiting the relationship between El Niño‣outhern Oscillation and the East Asian winter monsoon. International Journal of Climatology, 2018, 38, 4846-4859.	3.5	25
67	Interdecadal Weakening of the East Asian Winter Monsoon in the Mid-1980s: The Roles of External Forcings. Journal of Climate, 2018, 31, 8985-9000.	3.2	28
68	High-resolution simulation of Asian monsoon response to regional uplift of the Tibetan Plateau with regional climate model nested with global climate model. Global and Planetary Change, 2018, 169, 34-47.	3.5	14
69	Circulation Features Associated with the Record-Breaking Rainfall over South China in June 2017. Journal of Climate, 2018, 31, 7209-7224.	3.2	21
70	Characterizing present and future drought changes over eastern China. International Journal of Climatology, 2017, 37, 138-156.	3.5	41
71	Strengthened relationship between the Antarctic Oscillation and ENSO after the mid-1990s during austral spring. Advances in Atmospheric Sciences, 2017, 34, 54-65.	4.3	4
72	Contribution of human influence to increased daily precipitation extremes over China. Geophysical Research Letters, 2017, 44, 2436-2444.	4.0	66

#	Article	IF	CITATIONS
73	Strengthened Relationship between Eastern ENSO and Summer Precipitation over Northeastern China. Journal of Climate, 2017, 30, 4497-4512.	3.2	45
74	Anthropogenic warming has caused hot droughts more frequently in China. Journal of Hydrology, 2017, 544, 306-318.	5.4	113
75	Variability in zonal location of winter East Asian jet stream. International Journal of Climatology, 2017, 37, 3753-3766.	3.5	13
76	Assessment of the response of the East Asian winter monsoon to <scp>ENSO</scp> â€like <scp>SSTAs</scp> in three U.S. <scp>CLIVAR</scp> Project models. International Journal of Climatology, 2016, 36, 847-866.	3.5	11
77	Connection between November snow cover over Eastern Europe and winter precipitation over East Asia. International Journal of Climatology, 2016, 36, 2396-2404.	3.5	22
78	Role of the North Pacific sea surface temperature in the East Asian winter monsoon decadal variability. Climate Dynamics, 2016, 46, 3793-3805.	3.8	45
79	The impact of boreal autumn SST anomalies over the South Pacific on boreal winter precipitation over East Asia. Advances in Atmospheric Sciences, 2016, 33, 644-655.	4.3	6
80	Decadal change in factors affecting winter precipitation over eastern China. Climate Dynamics, 2016, 46, 111-121.	3.8	16
81	Dynamical seasonal predictability of the Arctic Oscillation using a <scp>CGCM</scp> . International Journal of Climatology, 2015, 35, 1342-1353.	3.5	38
82	Permafrost Thaw and Associated Settlement Hazard Onset Timing over the Qinghai-Tibet Engineering Corridor. International Journal of Disaster Risk Science, 2015, 6, 347-358.	2.9	24
83	Contribution of the phase transition of Pacific Decadal Oscillation to the late 1990s' shift in East China summer rainfall. Journal of Geophysical Research D: Atmospheres, 2015, 120, 8817-8827.	3.3	106
84	Changes in climate extreme events in China associated with warming. International Journal of Climatology, 2015, 35, 2735-2751.	3.5	81
85	Arctic sea ice and Eurasian climate: A review. Advances in Atmospheric Sciences, 2015, 32, 92-114.	4.3	169
86	A review of seasonal climate prediction research in China. Advances in Atmospheric Sciences, 2015, 32, 149-168.	4.3	50
87	Evaluation of a high-resolution historical simulation over China: climatology and extremes. Climate Dynamics, 2015, 45, 2013-2031.	3.8	102
88	Assessing model performance of climate extremes in China: an intercomparison between CMIP5 and CMIP3. Climatic Change, 2015, 129, 197-211.	3.6	59
89	Changes in Drought Characteristics over China Using the Standardized Precipitation Evapotranspiration Index. Journal of Climate, 2015, 28, 5430-5447.	3.2	311
90	Projection and uncertainty analysis of global precipitation-related extremes using CMIP5 models. International Journal of Climatology, 2014, 34, 2730-2748.	3.5	83

#	Article	IF	CITATIONS
91	The response of the East Asian summer monsoon to strong tropical volcanic eruptions. Advances in Atmospheric Sciences, 2014, 31, 1245-1255.	4.3	19
92	Role of natural external forcing factors in modulating the Indian summer monsoon rainfall, the winter North Atlantic Oscillation and their relationship on inter-decadal timescale. Climate Dynamics, 2014, 43, 2283-2295.	3.8	8
93	Record-breaking SST over mid-North Atlantic and extreme high temperature over the Jianghuai–Jiangnan region of China in 2013. Science Bulletin, 2014, 59, 3465-3470.	1.7	76
94	Climatic response to changes in vegetation in the Northwest Hetao Plain as simulated by the WRF model. International Journal of Climatology, 2013, 33, 1470-1481.	3.5	28
95	Changes in precipitation and extreme precipitation in a warming environment in China. Science Bulletin, 2013, 58, 1395-1401.	1.7	105
96	Projected change in East Asian summer monsoon precipitation under RCP scenario. Meteorology and Atmospheric Physics, 2013, 121, 55-77.	2.0	87
97	Possible Impact of the Summer North Atlantic Oscillation on Extreme Hot Events in China. Atmospheric and Oceanic Science Letters, 2012, 5, 231-234.	1.3	30
98	A Statistical Downscaling Model for Forecasting Summer Rainfall in China from DEMETER Hindcast Datasets. Weather and Forecasting, 2012, 27, 608-628.	1.4	29
99	A statistical downscaling scheme to improve global precipitation forecasting. Meteorology and Atmospheric Physics, 2012, 117, 87-102.	2.0	28
100	Changes of the connection between the summer North Atlantic Oscillation and the East Asian summer rainfall. Journal of Geophysical Research, 2012, 117, .	3.3	96
101	The Contribution of Extreme Precipitation to the Total Precipitation in China. Atmospheric and Oceanic Science Letters, 2012, 5, 499-503.	1.3	8
102	Decadal features of heavy rainfall events in eastern China. Journal of Meteorological Research, 2012, 26, 289-303.	1.0	33
103	Model projections of precipitation minus evaporation in China. Journal of Meteorological Research, 2012, 26, 376-388.	1.0	14
104	CGCM projections of heavy rainfall events in China. International Journal of Climatology, 2012, 32, 441-450.	3.5	96
105	A GCM-based forecasting model for the landfall of tropical cyclones in China. Advances in Atmospheric Sciences, 2011, 28, 1049-1055.	4.3	36
106	The hindcast of winter and spring Arctic and Antarctic oscillation with the coupled climate models. Journal of Meteorological Research, 2011, 25, 340-354.	1.0	11
107	Impacts of cumulus convective parameterization schemes on summer monsoon precipitation simulation over China. Journal of Meteorological Research, 2011, 25, 581-592.	1.0	35
108	Predictability of western North Pacific typhoon activity and its factors using DEMETER coupled models. Science Bulletin, 2011, 56, 3474-3479.	1.7	15

#	Article	lF	CITATIONS
109	Changes in the tropical cyclone genesis potential index over the western north pacific in the SRES A2 scenario. Advances in Atmospheric Sciences, 2010, 27, 1246-1258.	4.3	24
110	Linkage of the Boreal Spring Antarctic Oscillation to the West African Summer Monsoon. Journal of the Meteorological Society of Japan, 2010, 88, 15-28.	1.8	34
111	Possible Impact of the Boreal Spring Antarctic Oscillation on the North American Summer Monsoon. Atmospheric and Oceanic Science Letters, 2010, 3, 232-236.	1.3	26
112	Spatialâ€ŧemporal features of intense snowfall events in China and their possible change. Journal of Geophysical Research, 2010, 115, .	3.3	112
113	A possible mechanism for the coâ€variability of the boreal spring Antarctic Oscillation and the Yangtze River valley summer rainfall. International Journal of Climatology, 2009, 29, 1276-1284.	3.5	84
114	Ensemble projection of 1–3°C warming in China. Science Bulletin, 2009, 54, 3326-3334.	1.7	34
115	Enhancement of the summer North Atlantic Oscillation influence on Northern Hemisphere air temperature. Advances in Atmospheric Sciences, 2009, 26, 1209-1214.	4.3	32
116	Contribution of the sea surface temperature over the Mediterranean-Black Sea to the decadal shift of the summer North Atlantic Oscillation. Advances in Atmospheric Sciences, 2009, 26, 717-726.	4.3	12
117	How the "best―models project the future precipitation change in China. Advances in Atmospheric Sciences, 2009, 26, 773-782.	4.3	40
118	Variability of Northeast China river break-up date. Advances in Atmospheric Sciences, 2009, 26, 701-706.	4.3	35
119	Role of the tropical Atlantic sea surface temperature in the decadal change of the summer North Atlantic Oscillation. Journal of Geophysical Research, 2009, 114, .	3.3	35
120	Arabian Peninsula-North Pacific Oscillation and its association with the Asian summer monsoon. Science in China Series D: Earth Sciences, 2008, 51, 1001-1012.	0.9	16
121	The northern annular mode: More zonal symmetric than the southern annular mode. Science Bulletin, 2008, 53, 1740-1744.	9.0	5
122	Decadal variations of the relationship between the summer North Atlantic Oscillation and middle East Asian air temperature. Journal of Geophysical Research, 2008, 113, .	3.3	125
123	Brief review of some CLIVAR-related studies in China. Advances in Atmospheric Sciences, 2007, 24, 1037-1048.	4.3	3
124	Relationships between the North Pacific Oscillation and the typhoon/hurricane frequencies. Science in China Series D: Earth Sciences, 2007, 50, 1409-1416.	0.9	79
125	Regional Difference of Summer Air Temperature Anomalies in Northeast China and Its Relationship to Atmospheric General Circulation and Sea Surface Temperature. Chinese Journal of Geophysics, 2006, 49, 588-598.	0.2	19
126	Relationship between Arctic Oscillation and Pacific Decadal Oscillation on decadal timescale. Science Bulletin, 2006, 51, 75-79.	1.7	45

#	Article	IF	CITATIONS
127	Possible connection between declining Barents Sea ice and interdecadal increasing northeast China precipitation in May. International Journal of Climatology, 0, , .	3.5	5