Christian H Stamm

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/425330/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Towards circular phosphorus: The need of inter- and transdisciplinary research to close the broken cycle. Ambio, 2022, 51, 611-622.	2.8	19
2	Wastewater constituents impact biofilm microbial community in receiving streams. Science of the Total Environment, 2022, 807, 151080.	3.9	12
3	Are spray drift losses to agricultural roads more important for surface water contamination than direct drift to surface waters?. Science of the Total Environment, 2022, 809, 151102.	3.9	11
4	Participatory knowledge integration to promote safe pesticide use in Uganda. Environmental Science and Policy, 2022, 128, 154-164.	2.4	6
5	The importance of indirect effects of climate change adaptations on alpine and preâ€alpine freshwater systems. Ecological Solutions and Evidence, 2022, 3, .	0.8	4
6	Pesticide concentrations in agricultural storm drainage inlets of a small Swiss catchment. Environmental Science and Pollution Research, 2022, 29, 43966-43983.	2.7	7
7	Wastewater microorganisms impact the micropollutant biotransformation potential of natural stream biofilms. Water Research, 2022, 217, 118413.	5.3	17
8	Transportable Automated HRMS Platform "MS ² field―Enables Insights into Water-Quality Dynamics in Real Time. Environmental Science and Technology Letters, 2021, 8, 373-380.	3.9	25
9	Hydraulic shortcuts increase the connectivity of arable land areas to surface waters. Hydrology and Earth System Sciences, 2021, 25, 1727-1746.	1.9	15
10	Unraveling the riverine antibiotic resistome: The downstream fate of anthropogenic inputs. Water Research, 2021, 197, 117050.	5.3	50
11	Quantifying the Uncertainty of a Conceptual Herbicide Transport Model With Timeâ€Đependent, Stochastic Parameters. Water Resources Research, 2021, 57, e2020WR028311.	1.7	3
12	Impact of wastewater on the microbial diversity of periphyton and its tolerance to micropollutants in an engineered flow-through channel system. Water Research, 2021, 203, 117486.	5.3	31
13	What agro-input dealers know, sell and say to smallholder farmers about pesticides: a mystery shopping and KAP analysis in Uganda. Environmental Health, 2021, 20, 100.	1.7	11
14	The time it takes to reduce soil legacy phosphorus to a tolerable level for surface waters: What we learn from a case study in the catchment of Lake Baldegg, Switzerland. Geoderma, 2021, 403, 115257.	2.3	9
15	Microbial community shifts in streams receiving treated wastewater effluent. Science of the Total Environment, 2020, 709, 135727.	3.9	52
16	Temporal variation of pesticide mixtures in rivers of three agricultural watersheds during a major drought in the Western Cape, South Africa. Water Research X, 2020, 6, 100039.	2.8	44
17	Improving Risk Assessment by Predicting the Survival of Field Gammarids Exposed to Dynamic Pesticide Mixtures. Environmental Science & Technology, 2020, 54, 12383-12392.	4.6	9
18	Stream microbial communities and ecosystem functioning show complex responses to multiple stressors in wastewater. Global Change Biology, 2020, 26, 6363-6382.	4.2	52

#	Article	IF	CITATIONS
19	Coupling River Concentration Simulations with a Toxicokinetic Model Effectively Predicts the Internal Concentrations of Wastewater-Derived Micropollutants in Field Gammarids. Environmental Science & Technology, 2020, 54, 1710-1719.	4.6	6
20	Retrospective screening of high-resolution mass spectrometry archived digital samples can improve environmental risk assessment of emerging contaminants: A case study on antifungal azoles. Environment International, 2020, 139, 105708.	4.8	23
21	Characterizing fast herbicide transport in a small agricultural catchment with conceptual models. Journal of Hydrology, 2020, 586, 124812.	2.3	13
22	Comparative Analysis of Pesticide Use Determinants Among Smallholder Farmers From Costa Rica and Uganda. Environmental Health Insights, 2020, 14, 117863022097241.	0.6	39
23	Plants or bacteria? 130 years of mixed imprints in Lake Baldegg sediments (Switzerland), as revealed by compound-specific isotope analysis (CSIA) and biomarker analysis. Biogeosciences, 2019, 16, 2131-2146.	1.3	14
24	Effects of treated wastewater on the ecotoxicity of small streams – Unravelling the contribution of chemicals causing effects. PLoS ONE, 2019, 14, e0226278.	1.1	23
25	Agriculture versus wastewater pollution as drivers of macroinvertebrate community structure in streams. Science of the Total Environment, 2019, 659, 1256-1265.	3.9	60
26	Exposure to Pesticides and Health Effects on Farm Owners and Workers From Conventional and Organic Agricultural Farms in Costa Rica: Protocol for a Cross-Sectional Study. JMIR Research Protocols, 2019, 8, e10914.	0.5	35
27	Title is missing!. , 2019, 14, e0226278.		0
28	Title is missing!. , 2019, 14, e0226278.		0
29	Title is missing!. , 2019, 14, e0226278.		0
30	Title is missing!. , 2019, 14, e0226278.		0
31	Misfit between physical affectedness and regulatory embeddedness: The case of drinking water supply along the Rhine River. Global Environmental Change, 2018, 48, 136-150.	3.6	25
32	Pesticide Risks in Small Streams—How to Get as Close as Possible to the Stress Imposed on Aquatic Organisms. Environmental Science & Technology, 2018, 52, 4526-4535.	4.6	100
33	Multi-criteria decision analysis for integrated water quality assessment and management support. Water Research X, 2018, 1, 100010.	2.8	13
34	Relating Degradation of Pharmaceutical Active Ingredients in a Stream Network to Degradation in Waterâ€sediment Simulation Tests. Water Resources Research, 2018, 54, 9207-9223.	1.7	19
35	Simultaneous exposure to a pulsed and a prolonged anthropogenic stressor can alter consumer multifunctionality. Oikos, 2018, 127, 1437-1448.	1.2	9
36	Modelling biocide and herbicide concentrations in catchments of the Rhine basin. Hydrology and Earth System Sciences, 2018, 22, 4229-4249.	1.9	12

#	Article	IF	CITATIONS
37	Integrative Cropâ€Soilâ€Management Modeling to Assess Global Phosphorus Losses from Major Crop Cultivations. Global Biogeochemical Cycles, 2018, 32, 1074-1086.	1.9	29
38	Internal Concentrations in Gammarids Reveal Increased Risk of Organic Micropollutants in Wastewater-Impacted Streams. Environmental Science & Technology, 2018, 52, 10347-10358.	4.6	42
39	Effects of artificial land drainage on hydrology, nutrient and pesticide fluxes from agricultural fields – A review. Agriculture, Ecosystems and Environment, 2018, 266, 84-99.	2.5	74
40	Hysteresis and parent-metabolite analyses unravel characteristic pesticide transport mechanisms in a mixed land use catchment. Water Research, 2017, 124, 663-672.	5.3	3
41	Resilience to heat waves in the aquatic snail <i>Lymnaea stagnalis</i> : Additive and interactive effects with micropollutants. Freshwater Biology, 2017, 62, 1831-1846.	1.2	29
42	Integrating chemical analysis and bioanalysis to evaluate the contribution of wastewater effluent on the micropollutant burden in small streams. Science of the Total Environment, 2017, 576, 785-795.	3.9	131
43	Pesticides drive risk of micropollutants in wastewater-impacted streams during low flow conditions. Water Research, 2017, 110, 366-377.	5.3	146
44	Can integrative catchment management mitigate future water quality issues caused by climate change and socio-economic development?. Hydrology and Earth System Sciences, 2017, 21, 1593-1609.	1.9	14
45	Unravelling the Impacts of Micropollutants in Aquatic Ecosystems. Advances in Ecological Research, 2016, 55, 183-223.	1.4	81
46	REXPO: A catchment model designed to understand and simulate the loss dynamics of plant protection products and biocides from agricultural and urban areas. Journal of Hydrology, 2016, 533, 486-514.	2.3	14
47	Environmental context and magnitude of disturbance influence traitâ€mediated community responses to wastewater in streams. Ecology and Evolution, 2016, 6, 3923-3939.	0.8	53
48	Micropollutant Removal from Wastewater: Facts and Decision-Making Despite Uncertainty. Environmental Science & Technology, 2015, 49, 6374-6375.	4.6	22
49	Evaluation of in-situ calibration of Chemcatcher passive samplers for 322 micropollutants in agricultural and urban affected rivers. Water Research, 2015, 71, 306-317.	5.3	125
50	Future agriculture with minimized phosphorus losses to waters: Research needs and direction. Ambio, 2015, 44, 163-179.	2.8	210
51	Physico-chemical characteristics affect the spatial distribution of pesticide and transformation product loss to an agricultural brook. Science of the Total Environment, 2015, 532, 733-743.	3.9	20
52	How stressor specific are trait-based ecological indices for ecosystem management?. Science of the Total Environment, 2015, 505, 565-572.	3.9	23
53	Validating a spatially distributed hydrological model with soil morphology data. Hydrology and Earth System Sciences, 2014, 18, 3481-3498.	1.9	10
54	A comparison of three simple approaches to identify critical areas for runoff and dissolved reactive phosphorus losses. Hydrology and Earth System Sciences, 2014, 18, 2975-2991.	1.9	12

#	Article	IF	CITATIONS
55	The importance of hydrological uncertainty assessment methods in climate change impact studies. Hydrology and Earth System Sciences, 2014, 18, 3301-3317.	1.9	22
56	Spatial relationships between land-use, habitat, water quality and lotic macroinvertebrates in two Swiss catchments. Aquatic Sciences, 2014, 76, 375-392.	0.6	26
57	What's More Important for Managing Phosphorus: Loads, Concentrations or Both?. Environmental Science & Technology, 2014, 48, 23-24.	4.6	40
58	Reducing the Discharge of Micropollutants in the Aquatic Environment: The Benefits of Upgrading Wastewater Treatment Plants. Environmental Science & Technology, 2014, 48, 7683-7689.	4.6	451
59	How a Complete Pesticide Screening Changes the Assessment of Surface Water Quality. Environmental Science & Technology, 2014, 48, 5423-5432.	4.6	292
60	Critical source areas for herbicides can change location depending on rain events. Agriculture, Ecosystems and Environment, 2014, 192, 85-94.	2.5	29
61	Sustainability assessment of GM crops in a Swiss agricultural context. Agronomy for Sustainable Development, 2013, 33, 21-61.	2.2	12
62	Integrated uncertainty assessment of discharge predictions with a statistical error model. Water Resources Research, 2013, 49, 4866-4884.	1.7	35
63	Prediction of dissolved reactive phosphorus losses from small agricultural catchments: calibration and validation of a parsimonious model. Hydrology and Earth System Sciences, 2013, 17, 3679-3693.	1.9	15
64	Model-based estimation of pesticides and transformation products and their export pathways in a headwater catchment. Hydrology and Earth System Sciences, 2013, 17, 5213-5228.	1.9	32
65	Moving Targets, Long-Lived Infrastructure, and Increasing Needs for Integration and Adaptation in Water Management: An Illustration from Switzerland. Environmental Science & Technology, 2012, 46, 112-118.	4.6	16
66	Spatial variability of herbicide mobilisation and transport at catchment scale: insights from a field experiment. Hydrology and Earth System Sciences, 2012, 16, 1947-1967.	1.9	66
67	Phosphorus losses in runoff from manured grassland of different soil P status at two rainfall intensities. Agriculture, Ecosystems and Environment, 2012, 153, 65-74.	2.5	59
68	Environmental Risk Assessment of Fluctuating Diazinon Concentrations in an Urban and Agricultural Catchment Using Toxicokinetic–Toxicodynamic Modeling. Environmental Science & Technology, 2011, 45, 9783-9792.	4.6	30
69	Using discharge data to reduce structural deficits in a hydrological model with a Bayesian inference approach and the implications for the prediction of critical source areas. Water Resources Research, 2011, 47, .	1.7	22
70	Modelling biocide leaching from facades. Water Research, 2011, 45, 3453-3460.	5.3	32
71	Loss rates of urban biocides can exceed those of agricultural pesticides. Science of the Total Environment, 2011, 409, 920-932.	3.9	82
72	Estimating Catchment Vulnerability to Diffuse Herbicide Losses from Hydrograph Statistics. Journal of Environmental Quality, 2010, 39, 1441-1450.	1.0	17

#	Article	IF	CITATIONS
73	Targeting aquatic microcontaminants for monitoring: exposure categorization and application to the Swiss situation. Environmental Science and Pollution Research, 2010, 17, 341-354.	2.7	62
74	Relevance of urban glyphosate use for surface water quality. Chemosphere, 2010, 81, 422-429.	4.2	112
75	Significance of urban and agricultural land use for biocide and pesticide dynamics in surface waters. Water Research, 2010, 44, 2850-2862.	5.3	219
76	Predicting critical source areas for diffuse herbicide losses to surface waters: Role of connectivity and boundary conditions. Journal of Hydrology, 2009, 365, 23-36.	2.3	56
77	Modeling potential herbicide loss to surface waters on the Swiss plateau. Journal of Environmental Management, 2009, 91, 290-302.	3.8	16
78	Source area effects on herbicide losses to surface waters—A case study in the Swiss Plateau. Agriculture, Ecosystems and Environment, 2008, 128, 177-184.	2.5	78
79	Spatial and Temporal Patterns of Pharmaceuticals in the Aquatic Environment: A Review. Geography Compass, 2008, 2, 920-955.	1.5	23
80	Simulating Sulfadimidine Transport in Surface Runoff and Soil at the Microplot and Field Scale. Journal of Environmental Quality, 2008, 37, 788-797.	1.0	15
81	Dissipation and Transport of Veterinary Sulfonamide Antibiotics after Manure Application to Grassland in a Small Catchment. Environmental Science & Technology, 2007, 41, 7349-7355.	4.6	136
82	Depth Distribution of Sulfonamide Antibiotics in Pore Water of an Undisturbed Loamy Grassland Soil. Journal of Environmental Quality, 2007, 36, 588-596.	1.0	37
83	Time and pH-dependent sorption of the veterinary antimicrobial sulfathiazole to clay minerals and ferrihydrite. Chemosphere, 2007, 68, 1224-1231.	4.2	119
84	Sorption of the Veterinary Antimicrobial Sulfathiazole to Organic Materials of Different Origin. Environmental Science & Technology, 2007, 41, 132-138.	4.6	133
85	Selecting Scenarios to Assess Exposure of Surface Waters to Veterinary Medicines in Europe. Environmental Science & Technology, 2007, 41, 4669-4676.	4.6	21
86	Reducing phosphorus losses from overâ€fertilized grassland soils proves difficult in the short term. Soil Use and Management, 2007, 23, 154-164.	2.6	38
87	Including Mixtures in the Determination of Water Quality Criteria for Herbicides in Surface Water. Environmental Science & Technology, 2006, 40, 426-435.	4.6	115
88	A parsimonious soil-type based rainfall-runoff model simultaneously tested in four small agricultural catchments. Journal of Hydrology, 2006, 321, 21-38.	2.3	23
89	Effect of water composition on phosphorus concentration in runoff and water-soluble phosphate in two grassland soils. European Journal of Soil Science, 2006, 57, 228-234.	1.8	14
90	Exhaustive extraction of sulfonamide antibiotics from aged agricultural soils using pressurized liquid extraction. Journal of Chromatography A, 2006, 1128, 1-9.	1.8	104

#	Article	IF	CITATIONS
91	Surface Runoff and Transport of Sulfonamide Antibiotics and Tracers on Manured Grassland. Journal of Environmental Quality, 2005, 34, 1363-1371.	1.0	135
92	Comparison of Atrazine Losses in Three Small Headwater Catchments. Journal of Environmental Quality, 2005, 34, 1873-1882.	1.0	40
93	Phosphorus export dynamics from two Swiss grassland catchments. Journal of Hydrology, 2005, 304, 139-150.	2.3	47
94	Ground-Based Dual-Frequency Radiometry of Bare Soil at High Temporal Resolution. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42, 588-595.	2.7	17
95	Variability of Herbicide Losses from 13 Fields to Surface Water within a Small Catchment after a Controlled Herbicide Application. Environmental Science & Technology, 2004, 38, 3835-3841.	4.6	137
96	Simultaneous Assessment of Sources, Processes, and Factors Influencing Herbicide Losses to Surface Waters in a Small Agricultural Catchment. Environmental Science & Technology, 2004, 38, 3827-3834.	4.6	151
97	Multifrequency ground-based radiometer and in-situ measurements of soil moisture at high temporal resolution. , 2003, , .		2
98	Estimating soil hydraulic properties from time series of remotely sensed and in-situ measured topsoil water contents. , 2003, 4879, 211.		0
99	Incidental phosphorus losses– are they significant and can they be predicted?. Journal of Plant Nutrition and Soil Science, 2003, 166, 459-468.	1.1	131
100	Discrimination of Flow Regions on the Basis of Stained Infiltration Patterns in Soil Profiles. Vadose Zone Journal, 2003, 2, 338.	1.3	0
101	Influence of soil structure on topsoil water dynamics observed by a groundbased 11.4 GHz microwave radiometer: first results. , 2002, 4542, 122.		2
102	Multiple tracing of fast solute transport in a drained grassland soil. Geoderma, 2002, 109, 245-268.	2.3	79
103	Transport of Phosphate from Soil to Surface Waters by Preferential Flow. Environmental Science & Technology, 1998, 32, 1865-1869.	4.6	102
104	Phosphorus Mobility in the Landscape. Agronomy, 0, , 941-979.	0.2	9
105	A triad of kicknet sampling, eDNA metabarcoding, and predictive modeling to assess richness of mayflies, stoneflies and caddisflies in rivers. Metabarcoding and Metagenomics, 0, 6, .	0.0	5