Carola Y Förster

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4252675/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microvascular Barrier Protection by microRNA-183 via FoxO1 Repression: A Pathway Disturbed in Neuropathy and Complex Regional Pain Syndrome. Journal of Pain, 2022, 23, 967-980.	1.4	8
2	Quantitative Lipidomic Analysis of Takotsubo Syndrome Patients' Serum. Frontiers in Cardiovascular Medicine, 2022, 9, 797154.	2.4	4
3	Senescence and associated blood–brain barrier alterations in vitro. Histochemistry and Cell Biology, 2021, 156, 283-292.	1.7	13
4	The Conspicuous Link between Ear, Brain and Heart–Could Neurotrophin-Treatment of Age-Related Hearing Loss Help Prevent Alzheimer's Disease and Associated Amyloid Cardiomyopathy?. Biomolecules, 2021, 11, 900.	4.0	10
5	Scaffold Searching of FDA and EMA-Approved Drugs Identifies Lead Candidates for Drug Repurposing in Alzheimer's Disease. Frontiers in Chemistry, 2021, 9, 736509.	3.6	11
6	Neuroprotective Effects of Isosteviol Sodium in Murine Brain Capillary Cerebellar Endothelial Cells (cerebEND) After Hypoxia. Frontiers in Cellular Neuroscience, 2020, 14, 573950.	3.7	10
7	Kidney Ischemia/Reperfusion Injury Induces Changes in the Drug Transporter Expression at the Blood–Brain Barrier in vivo and in vitro. Frontiers in Physiology, 2020, 11, 569881.	2.8	19
8	Increased Catecholamine Levels and Inflammatory Mediators Alter Barrier Properties of Brain Microvascular Endothelial Cells in vitro. Frontiers in Cardiovascular Medicine, 2020, 7, 73.	2.4	27
9	Modeling of shotgun sequencing of DNA plasmids using experimental and theoretical approaches. BMC Bioinformatics, 2020, 21, 132.	2.6	1
10	The Influence of Capsaicin on the Integrity of Microvascular Endothelial Cell Monolayers. International Journal of Molecular Sciences, 2019, 20, 122.	4.1	13
11	Hypoxia-Induced MicroRNA-212/132 Alter Blood-Brain Barrier Integrity Through Inhibition of Tight Junction-Associated Proteins in Human and Mouse Brain Microvascular Endothelial Cells. Translational Stroke Research, 2019, 10, 672-683.	4.2	86
12	An In Vitro Model of Traumatic Brain Injury. Methods in Molecular Biology, 2018, 1717, 219-227.	0.9	22
13	Computational simulation and modeling of the blood–brain barrier pathology. Histochemistry and Cell Biology, 2018, 149, 451-459.	1.7	11
14	Multiple protocadherins are expressed in brain microvascular endothelial cells and might play a role in tight junction protein regulation. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 3391-3400.	4.3	29
15	In silico models for nanotoxicity evaluation and prediction at the blood-brain barrier level: A mini-review. Computational Toxicology, 2017, 2, 20-27.	3.3	29
16	Evaluation of the potential toxicity of unmodified and modified cyclodextrins on murine blood-brain barrier endothelial cells. Journal of Toxicological Sciences, 2016, 41, 175-184.	1.5	28
17	InÂvitro models of the blood–brain barrier: An overview of commonly used brain endothelial cell culture models and guidelines for their use. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 862-890.	4.3	588
18	Characterization, in Vivo Evaluation, and Molecular Modeling of Different Propofol–Cyclodextrin Complexes To Assess Their Drug Delivery Potential at the Blood–Brain Barrier Level. Journal of Chemical Information and Modeling, 2016, 56, 1914-1922.	5.4	39

Carola Y Förster

#	Article	IF	CITATIONS
19	Tight Junctions and the Tumor Microenvironment. Current Pathobiology Reports, 2016, 4, 135-145.	3.4	70
20	Sevoflurane-Sulfobutylether-β-Cyclodextrin Complex: Preparation, Characterization, Cellular Toxicity, Molecular Modeling and Blood-Brain Barrier Transport Studies. Molecules, 2015, 20, 10264-10279.	3.8	25
21	Stretch and/or oxygen glucose deprivation (OGD) in an in vitro traumatic brain injury (TBI) model induces calcium alteration and inflammatory cascade. Frontiers in Cellular Neuroscience, 2015, 9, 323.	3.7	66
22	Multiple Antenatal Dexamethasone Treatment Alters Brain Vessel Differentiation in Newborn Mouse Pups. PLoS ONE, 2015, 10, e0136221.	2.5	14
23	Blood–brain barrier transport studies, aggregation, and molecular dynamics simulation of multiwalled carbon nanotube functionalized with fluorescein isothiocyanate. International Journal of Nanomedicine, 2015, 10, 1703.	6.7	64
24	The pivotal role of astrocytes in an in vitro stroke model of the blood-brain barrier. Frontiers in Cellular Neuroscience, 2014, 8, 352.	3.7	57
25	In silico predictive model to determine vector-mediated transport properties for the blood–brain barrier choline transporter. Advances and Applications in Bioinformatics and Chemistry, 2014, 7, 23.	2.6	119
26	Glucocorticoids and endothelial cell barrier function. Cell and Tissue Research, 2014, 355, 597-605.	2.9	112
27	Mechanisms of transcriptional activation of the mouse claudin-5 promoter by estrogen receptor alpha and beta. Molecular and Cellular Endocrinology, 2014, 392, 144-151.	3.2	32
28	Ionization States, Cellular Toxicity and Molecular Modeling Studies of Midazolam Complexed with Trimethyl-β-Cyclodextrin. Molecules, 2014, 19, 16861-16876.	3.8	24
29	Analysing molecular polar surface descriptors to predict blood-brain barrier permeation. International Journal of Computational Biology and Drug Design, 2013, 6, 146.	0.3	65
30	Multidrug resistance protein P-gp interaction with nanoparticles (fullerenes and carbon nanotube) to assess their drug delivery potential: a theoretical molecular docking study. International Journal of Computational Biology and Drug Design, 2013, 6, 343.	0.3	31
31	Pharmacokinetic Delivery and Metabolizing Rate of Nicardipine Incorporated in Hydrophilic and Hydrophobic Cyclodextrins Using Two-Compartment Mathematical Model. Scientific World Journal, The, 2013, 2013, 1-9.	2.1	8
32	α-Cyclodextrin dimer complexes of dopamine and levodopa derivatives to assess drug delivery to the central nervous system: ADME and molecular docking studies. International Journal of Nanomedicine, 2012, 7, 3211.	6.7	37
33	Generation of an Immortalized Murine Brain Microvascular Endothelial Cell Line as an In Vitro Blood Brain Barrier Model. Journal of Visualized Experiments, 2012, , e4022.	0.3	37
34	Addition of NMDA-receptor antagonist MK801 during oxygen/glucose deprivation moderately attenuates the upregulation of glucose uptake after subsequent reoxygenation in brain endothelial cells. Neuroscience Letters, 2012, 506, 44-49.	2.1	37
35	Lung endothelial cells strengthen, but brain endothelial cells weaken barrier properties of a human alveolar epithelium cell culture model. Differentiation, 2012, 84, 294-304.	1.9	25
36	Glucocorticoid Insensitivity at the Hypoxic Blood–Brain Barrier Can Be Reversed by Inhibition of the Proteasome. Stroke, 2011, 42, 1081-1089.	2.0	79

Carola Y Förster

#	Article	IF	CITATIONS
37	Claudin-5 as a Novel Estrogen Target in Vascular Endothelium. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 298-304.	2.4	101
38	Glucocorticoid effects on endothelial barrier function in the murine brain endothelial cell line cEND incubated with sera from patients with multiple sclerosis. Multiple Sclerosis Journal, 2010, 16, 293-302.	3.0	50
39	Cloning and characterization of the murine claudin-5 promoter. Molecular and Cellular Endocrinology, 2009, 298, 19-24.	3.2	54
40	Tight junctions and the modulation of barrier function in disease. Histochemistry and Cell Biology, 2008, 130, 55-70.	1.7	492
41	Glucocorticoids Increase VE-Cadherin Expression and Cause Cytoskeletal Rearrangements in Murine Brain Endothelial cEND Cells. Journal of Cerebral Blood Flow and Metabolism, 2008, 28, 1139-1149.	4.3	58
42	Differential effects of hydrocortisone and TNFα on tight junction proteins in an <i>in vitro</i> model of the human blood–brain barrier. Journal of Physiology, 2008, 586, 1937-1949.	2.9	262
43	Glucocorticoids regulate the human occludin gene through a single imperfect palindromic glucocorticoid response element. Molecular and Cellular Endocrinology, 2008, 295, 39-47.	3.2	36
44	Dexamethasone induces the expression of metalloproteinase inhibitor TIMPâ€1 in the murine cerebral vascular endothelial cell line cEND. Journal of Physiology, 2007, 580, 937-949.	2.9	84
45	Glucocorticoid effects on mouse microvascular endothelial barrier permeability are brain specific. Journal of Physiology, 2006, 573, 413-425.	2.9	80
46	Differential susceptibility of cerebral and cerebellar murine brain microvascular endothelial cells to loss of barrier properties in response to inflammatory stimuli. Journal of Neuroimmunology, 2006, 179, 37-45.	2.3	93
47	Glucocorticoid regulation of blood brain barrier permeability. , 2006, , 34-35.		Ο
48	Occludin as direct target for glucocorticoid-induced improvement of blood-brain barrier properties in a murinein vitrosystem. Journal of Physiology, 2005, 565, 475-486.	2.9	187
49	Characterization of the ERÂ-/-mouse heart. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14234-14239.	7.1	63
50	Involvement of estrogen receptor β in terminal differentiation of mammary gland epithelium. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 15578-15583.	7.1	218