
Huawei Pi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4252378/publications.pdf Version: 2024-02-01

Ηιιλλίει Ρι

#	Article	IF	CITATIONS
1	Wind erosion of soil influenced by clay amendment in the inland Pacific Northwest, <scp>USA</scp> . Land Degradation and Development, 2021, 32, 241-255.	3.9	16
2	Influence of physical crust cover on the wind erodibility of soils in the inland Pacific Northwest, USA. Earth Surface Processes and Landforms, 2021, 46, 1445-1457.	2.5	7
3	Contribution of Snow-Melt Water to the Streamflow over the Three-River Headwater Region, China. Remote Sensing, 2021, 13, 1585.	4.0	11
4	Modeling Soil Wind Erosion From Agroecological Classes of the Pacific Northwest in Response to Current Climate. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031104.	3.3	6
5	Comparison of soil-aggregate crushing-energy meters. Aeolian Research, 2020, 42, 100559.	2.7	5
6	Critical standing crop residue amounts for wind erosion control in the inland Pacific Northwest, USA. Catena, 2020, 195, 104742.	5.0	24
7	Threshold friction velocities influenced by standing crop residue in the inland Pacific Northwest, USA. Land Degradation and Development, 2020, 31, 2356-2368.	3.9	8
8	Influence of clay amendment on soil physical properties and threshold friction velocity within a disturbed crust cover in the inland pacific Northwest. Soil and Tillage Research, 2020, 202, 104659.	5.6	3
9	Dry aggregate stability of soils influenced by crop rotation, soil amendment, and tillage in the Columbia Plateau. Aeolian Research, 2019, 40, 65-73.	2.7	14
10	Threshold Friction Velocity Influenced by the Crust Cover of Soils in the Columbia Plateau. Soil Science Society of America Journal, 2019, 83, 232-241.	2.2	10
11	Wind erosion and dust emissions in central Asia: Spatiotemporal simulations in a typical dust year. Earth Surface Processes and Landforms, 2019, 44, 521-534.	2.5	18
12	Chemical composition of windblown dust emitted from agricultural soils amended with biosolids. Aeolian Research, 2018, 32, 102-115.	2.7	8
13	Wind erosion potential of a winter wheat–summer fallow rotation after land application of biosolids. Aeolian Research, 2018, 32, 53-59.	2.7	19
14	Evaluation of two empirical wind erosion models in arid and semi-arid regions of China and the USA. Environmental Modelling and Software, 2017, 91, 28-46.	4.5	46
15	Evaluation of the RWEQ and SWEEP in simulating soil and PM10 loss from a portable wind tunnel. Soil and Tillage Research, 2017, 170, 94-103.	5.6	26
16	Windblown sediment transport and loss in a desert–oasis ecotone in the Tarim Basin. Scientific Reports, 2017, 7, 7723.	3.3	19
17	Atmospheric dust events in central Asia: Relationship to wind, soil type, and land use. Journal of Geophysical Research D: Atmospheres, 2017, 122, 6652-6671.	3.3	17
18	Comparison of Measured and Simulated Friction Velocity and Threshold Friction Velocity Using SWEEP. Soil Science, 2014, 179, 393-402.	0.9	10

Huawei Pi

#	Article	IF	CITATIONS
19	Validation of SWEEP for Contrasting Agricultural Land Use Types in the Tarim Basin. Soil Science, 2014, 179, 433-445.	0.9	14
20	Ambient TSP concentration and dustfall variation in Urumqi, China. Journal of Arid Land, 2014, 6, 668-677.	2.3	11
21	Performance of the SWEEP model in assessing the impact of crop rotation, green manure, fertilizer, and tillage on wind erosion. Land Degradation and Development, 0, , .	3.9	2