Cesar Rodriguez-Saona

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/425106/publications.pdf

Version: 2024-02-01

143 papers 4,681 citations

35 h-index 63 g-index

144 all docs

144 docs citations

times ranked

144

3688 citing authors

#	Article	IF	CITATIONS
1	Bottom-Up Forces in Agroecosystems and Their Potential Impact on Arthropod Pest Management. Annual Review of Entomology, 2022, 67, 239-259.	5.7	65
2	Control of Blunt-Nosed Leafhopper With Conventional Insecticides in Cranberries, 2021. Arthropod Management Tests, 2022, 47, .	0.1	0
3	Control of Plum Curculio on Highbush Blueberries, 2021. Arthropod Management Tests, 2022, 47, .	0.1	0
4	Spotted Fireworm Control on Cranberries, 2021. Arthropod Management Tests, 2022, 47, .	0.1	0
5	Control of Blunt-Nosed Leafhopper With Biological Insecticides in Cranberries, 2021. Arthropod Management Tests, 2022, 47, .	0.1	0
6	Factors Influencing the Efficacy of Novel Attract-and-Kill (ACTTRA SWD) Formulations Against <i>Drosophila suzukii</i> . Journal of Economic Entomology, 2022, 115, 981-989.	0.8	7
7	Aphid Control on Blueberries, 2021. Arthropod Management Tests, 2022, 47, .	0.1	0
8	Monitoring of Spotted-Wing Drosophila (Diptera: Drosophilidae) Resistance Status Using a RAPID Method for Assessing Insecticide Sensitivity Across the United States. Journal of Economic Entomology, 2022, 115, 1046-1053.	0.8	6
9	Editorial: Chemical Ecology and Conservation Biological Control. Frontiers in Ecology and Evolution, 2022, 10, .	1.1	O
10	Comparative Adult Mortality and Relative Attractiveness of Spotted-Wing Drosophila (Diptera:) Tj ETQq0 0 0 rgB Insecticides. Frontiers in Ecology and Evolution, 2022, 10, .	BT /Overloo 1.1	ck 10 Tf 50 38 2
10			
	Insecticides. Frontiers in Ecology and Evolution, 2022, 10, . Factors affecting the efficacy of attracticidal spheres for management of <i>Drosophila suzukii</i>	1.1	2
11	Insecticides. Frontiers in Ecology and Evolution, 2022, 10, . Factors affecting the efficacy of attracticidal spheres for management of <i>Drosophila suzukii</i> (Diptera Drosophilidae). Journal of Applied Entomology, 2022, 146, 243-251. Entomopathogenic Nematodes for the Management of Plum Curculio in Highbush Blueberry. Biology,	0.8	3
11 12	Insecticides. Frontiers in Ecology and Evolution, 2022, 10, . Factors affecting the efficacy of attracticidal spheres for management of <i>Drosophila suzukii</i> (Diptera Drosophilidae). Journal of Applied Entomology, 2022, 146, 243-251. Entomopathogenic Nematodes for the Management of Plum Curculio in Highbush Blueberry. Biology, 2022, 11, 45. Novel hosts can incur fitness costs to a frugivorous insect pest. Ecology and Evolution, 2022, 12,	0.8	3
11 12 13	Insecticides. Frontiers in Ecology and Evolution, 2022, 10, . Factors affecting the efficacy of attracticidal spheres for management of <i>Drosophila suzukii</i> (Diptera Drosophilidae). Journal of Applied Entomology, 2022, 146, 243-251. Entomopathogenic Nematodes for the Management of Plum Curculio in Highbush Blueberry. Biology, 2022, 11, 45. Novel hosts can incur fitness costs to a frugivorous insect pest. Ecology and Evolution, 2022, 12, e8841. Biological control of invasive stink bugs: review of global state and future prospects. Entomologia	1.1 0.8 1.3	2 3 0
11 12 13	Insecticides. Frontiers in Ecology and Evolution, 2022, 10, . Factors affecting the efficacy of attracticidal spheres for management of <i>Drosophila suzukii</i> (Diptera Drosophilidae). Journal of Applied Entomology, 2022, 146, 243-251. Entomopathogenic Nematodes for the Management of Plum Curculio in Highbush Blueberry. Biology, 2022, 11, 45. Novel hosts can incur fitness costs to a frugivorous insect pest. Ecology and Evolution, 2022, 12, e8841. Biological control of invasive stink bugs: review of global state and future prospects. Entomologia Experimentalis Et Applicata, 2021, 169, 28-51. Efficacy of Attract-and-Kill Formulations Using the Adjuvant Acttra SWD TD for the Management of	1.1 0.8 1.3 0.8	2 3 0 2 60
11 12 13 14	Insecticides. Frontiers in Ecology and Evolution, 2022, 10, . Factors affecting the efficacy of attracticidal spheres for management of <i>Drosophila suzukii</i> (Diptera Drosophilidae). Journal of Applied Entomology, 2022, 146, 243-251. Entomopathogenic Nematodes for the Management of Plum Curculio in Highbush Blueberry. Biology, 2022, 11, 45. Novel hosts can incur fitness costs to a frugivorous insect pest. Ecology and Evolution, 2022, 12, e8841. Biological control of invasive stink bugs: review of global state and future prospects. Entomologia Experimentalis Et Applicata, 2021, 169, 28-51. Efficacy of Attract-and-Kill Formulations Using the Adjuvant Acttra SWD TD for the Management of Spotted-Wing Drosophila in Blueberries, 2020. Arthropod Management Tests, 2021, 46, . Genotypic Variation in Plant Traits, Chemical Defenses, and Resistance Against Insect Herbivores in	1.1 0.8 1.3 0.8 0.7	2 3 0 2 60 3

#	Article	IF	CITATIONS
19	The abundance and diversity of fruit flies and their parasitoids change with elevation in guava orchards in a tropical Andean forest of Peru, independent of seasonality. PLoS ONE, 2021, 16, e0250731.	1.1	6
20	Application of Plant Defense Elicitors Fails to Enhance Herbivore Resistance or Mitigate Phytoplasma Infection in Cranberries. Frontiers in Plant Science, 2021, 12, 700242.	1.7	1
21	<i>Drosophila suzukii</i> (Diptera: Drosophilidae): A Decade of Research Towards a Sustainable Integrated Pest Management Program. Journal of Economic Entomology, 2021, 114, 1950-1974.	0.8	113
22	Behavioral Response of Halyomorpha halys (Hemiptera: Pentatomidae) and Its Egg Parasitoid Trissolcus japonicus (Hymenoptera: Scelionidae) to Host Plant Odors. Frontiers in Ecology and Evolution, 2021, 9,	1.1	5
23	Within-Canopy Distribution of Stenoma catenifer (Lepidoptera: Elachistidae) Infestation in Avocado Orchards. Journal of Insect Science, 2021, 21, .	0.6	1
24	Fruit volatiles mediate differential attraction of Drosophila suzukii to wild and cultivated blueberries. Journal of Pest Science, 2021, 94, 1249-1263.	1.9	12
25	Releases of <i>Chrysoperla externa</i> (Neuroptera: Chrysopidae) Eggs for the Control of the Coffee Leaf Miner, <i>Leucoptera coffeella</i> (Lepidoptera: Lyonetiidae), 2020. Arthropod Management Tests, 2021, 46, .	0.1	6
26	Use of forested field edges by a blueberry insect pest, Rhagoletis mendax (Diptera: Tephritidae). Agricultural and Forest Entomology, 2021, 23, 189-202.	0.7	1
27	Balancing Disturbance and Conservation in Agroecosystems to Improve Biological Control. Annual Review of Entomology, 2020, 65, 81-100.	5 . 7	52
28	Phytoplasma Infection of Cranberry Affects Development and Oviposition, but Not Host-Plant Selection, of the Insect Vector Limotettix vaccinii. Journal of Chemical Ecology, 2020, 46, 722-734.	0.9	5
29	Plant guttation provides nutrient-rich food for insects. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201080.	1.2	16
30	A Review of the Biology, Ecology, and Management of Plum Curculio (Coleoptera: Curculionidae). Journal of Integrated Pest Management, 2020, 11 , .	0.9	6
31	Interpreting Temporal and Spatial Variation in Spotted-Wing Drosophila (Diptera: Drosophilidae) Trap Captures in Highbush Blueberries. Journal of Economic Entomology, 2020, 113, 2362-2371.	0.8	7
32	Interactive Effects of an Herbivore-Induced Plant Volatile and Color on an Insect Community in Cranberry. Insects, 2020, 11, 524.	1.0	3
33	Repellent, oviposition-deterrent, and insecticidal activity of the fungal pathogen Colletotrichum fioriniae on Drosophila suzukii (Diptera: Drosophilidae) in highbush blueberries. Scientific Reports, 2020, 10, 14467.	1.6	5
34	Aphid Control on Blueberries, 2019. Arthropod Management Tests, 2020, 45, .	0.1	0
35	Release density, dispersal capacity, and optimal rearing conditions for <i>Telenomus remus</i> , an egg parasitoid of <i>Spodoptera frugiperda</i> , in maize. Biocontrol Science and Technology, 2020, 30, 1040-1059.	0.5	15
36	Cranberry Toad Bug Control on Cranberries, 2014. Arthropod Management Tests, 2020, 45, .	0.1	0

#	Article	IF	CITATIONS
37	Neighborhood Effects of Herbivore-Induced Plant Resistance Vary Along an Elevational Gradient. Frontiers in Ecology and Evolution, 2020, 8, .	1.1	8
38	Fineâ€tuning the composition of the cranberry weevil (Coleoptera: Curculionidae) aggregation pheromone. Journal of Applied Entomology, 2020, 144, 417-421.	0.8	4
39	Non-crop habitats serve as a potential source of spotted-wing drosophila (Diptera: Drosophilidae) to adjacent cultivated highbush blueberries (Ericaceae). Canadian Entomologist, 2020, 152, 474-489.	0.4	15
40	Molecular and ecological plant defense responses along an elevational gradient in a boreal ecosystem. Ecology and Evolution, 2020, 10, 2478-2491.	0.8	7
41	Cranberry Toad Bug Control on Cranberries, 2016–2017. Arthropod Management Tests, 2020, 45, .	0.1	0
42	Progress and Challenges in Building Monitoring Systems for Drosophila suzukii., 2020, , 111-132.		5
43	Characterizing the Feeding Injury Caused by Phylloscelis rubra (Hemiptera: Dictyopharidae) to Cranberries. Journal of Insect Science, 2020, 20, .	0.6	1
44	Laboratory and Field Evaluation of Host-Related Foraging Odor-Cue Combinations to Attract Drosophila suzukii (Diptera: Drosophilidae). Journal of Economic Entomology, 2019, 112, 2850-2860.	0.8	21
45	Does enhanced nutrient availability increase volatile emissions in cranberry?. Plant Signaling and Behavior, 2019, 14, 1616517.	1.2	2
46	Exploring an Odor-Baited "Trap Bush―Approach to Aggregate Plum Curculio (Coleoptera:) Tj ETQq0 0 0 rgB	T /Overloc 1.0	k 30 Tf 50 38
47	Phytoplasma Infection of Cranberries Benefits Non-vector Phytophagous Insects. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	15
48	Phytoplasma Infection Influences Gene Expression in American Cranberry. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	5
49	Increased nutrient availability decreases insect resistance in cranberry. Agricultural and Forest Entomology, 2019, 21, 326-335.	0.7	26
50	Blunt-Nosed Leafhopper Control on Cranberries, 2018. Arthropod Management Tests, 2019, 44, .	0.1	1
51	Transcriptional profiling of methyl jasmonate-induced defense responses in bilberry (Vaccinium) Tj ETQq $1\ 1\ 0.78$ 4	4314 rgBT 1.6	/Qyerlock 10
52	Plant Stimuli and Their Impact on Brown Marmorated Stink Bug Dispersal and Host Selection. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	10
53	Methyl Salicylate Increases Attraction and Function of Beneficial Arthropods in Cranberries. Insects, 2019, 10, 423.	1.0	21
54	Differential Susceptibility of Wild and Cultivated Blueberries to an Invasive Frugivorous Pest. Journal of Chemical Ecology, 2019, 45, 286-297.	0.9	24

#	Article	IF	CITATIONS
55	Genotypic Variation and Phenotypic Plasticity in Gene Expression and Emissions of Herbivore-Induced Volatiles, and their Potential Tritrophic Implications, in Cranberries. Journal of Chemical Ecology, 2019, 45, 298-312.	0.9	20
56	Blueberry IPM: Past Successes and Future Challenges. Annual Review of Entomology, 2019, 64, 95-114.	5.7	45
57	Comparison of Trap Types, Placement, and Colors for Monitoring Anthonomus musculus (Coleoptera:) Tj ETQq1	1 0.78431 0.6	4 rgBT /Overl
58	Landscape features determining the occurrence of Rhagoletis mendax (Diptera: Tephritidae) flies in blueberries. Agriculture, Ecosystems and Environment, 2018, 258, 113-120.	2.5	8
59	Multistate Comparison of Attractants and the Impact of Fruit Development Stage on Trapping Drosophila suzukii (Diptera: Drosophilidae) in Raspberry and Blueberry. Environmental Entomology, 2018, 47, 935-945.	0.7	28
60	Cascading effects of combining synthetic herbivoreâ€induced plant volatiles with companion plants to manipulate natural enemies in an agroâ€ecosystem. Pest Management Science, 2018, 74, 2133-2145.	1.7	20
61	Biological Control: Ecology and Applications. American Entomologist, 2018, 64, E2-E2.	0.1	3
62	Testing the â€~plant domestication-reduced defense' hypothesis in blueberries: the role of herbivore identity. Arthropod-Plant Interactions, 2018, 12, 483-493.	0.5	25
63	Blunt-Nosed Leafhopper Control in Cranberries, 2014. Arthropod Management Tests, 2018, 43, .	0.1	0
64	Multiannual effects of induced plant defenses: Are defended plants good or bad neighbors?. Ecology and Evolution, 2018, 8, 8940-8950.	0.8	15
65	Advances in the Chemical Ecology of the Spotted Wing Drosophila (Drosophila suzukii) and its Applications. Journal of Chemical Ecology, 2018, 44, 922-939.	0.9	94
66	Role of Plant Volatiles in Host Plant Recognition by Listronotus maculicollis (Coleoptera:) Tj ETQq0 0 0 rgBT /Ove	erlock 10 T	f 50 302 Td (
67	Breeding Trait Priorities of the Blueberry Industry in the United States and Canada. Hortscience: A Publication of the American Society for Hortcultural Science, 2018, 53, 1021-1028.	0.5	56
68	Constitutive exposure to the volatile methyl salicylate reduces perâ \in capita foraging efficiency of a generalist predator to learned prey associations. Entomologia Experimentalis Et Applicata, 2018, 166, 661-672.	0.7	4
69	Breeding Trait Priorities of the Cranberry Industry in the United States and Canada. Hortscience: A Publication of the American Society for Hortcultural Science, 2018, 53, 1467-1474.	0.5	22
70	Exposure to heavy metal stress does not increase fluctuating asymmetry in populations of isopod and hardwood trees. Ecological Indicators, 2017, 76, 42-51.	2.6	5
71	Behavioral responses of predaceous minute pirate bugs to tridecane, a volatile emitted by the brown marmorated stink bug. Journal of Pest Science, 2017, 90, 1107-1118.	1.9	13
72	Chemical ecology of Halyomorpha halys: discoveries and applications. Journal of Pest Science, 2017, 90, 989-1008.	1.9	75

#	Article	IF	CITATIONS
73	From laboratory to field: electro-antennographic and behavioral responsiveness of two insect predators to methyl salicylate. Chemoecology, 2017, 27, 51-63.	0.6	29
74	Tempo-Spatial Dynamics of Adult Plum Curculio (Coleoptera: Curculionidae) Based on Semiochemical-Baited Trap Captures in Blueberries. Environmental Entomology, 2017, 46, 674-684.	0.7	4
75	Characterizing the spatial distribution of brown marmorated stink bug, Halyomorpha halys Stål (Hemiptera: Pentatomidae), populations in peach orchards. PLoS ONE, 2017, 12, e0170889.	1.1	16
76	Methyl jasmonate induction of cotton: a field test of the â€~attract and reward' strategy of conservation biological control. AoB PLANTS, 2017, 9, plx032.	1.2	11
77	How to induce defense responses in wild plant populations? Using bilberry (<i>Vaccinium) Tj ETQq1 1 0.784314 r</i>	rgBT ₈ /Over	rlock 10 Tf 50
78	Toxicity of Insecticides on Various Life Stages of Two Tortricid Pests of Cranberries and on a Non-Target Predator. Insects, 2016, 7, 15.	1.0	22
79	Pheromone Autodetection: Evidence and Implications. Insects, 2016, 7, 17.	1.0	41
80	Exploring the Spread of Brown Marmorated Stink Bug in New Jersey Through the Use of Crowdsourced Reports. American Entomologist, 2016, 62, 36-45.	0.1	14
81	Frugivory by Brown Marmorated Stink Bug (Hemiptera: Pentatomidae) Alters Blueberry Fruit Chemistry and Preference by Conspecifics. Environmental Entomology, 2016, 45, 1227-1234.	0.7	15
82	Differential Response of a Local Population of Entomopathogenic Nematodes to Non-Native Herbivore Induced Plant Volatiles (HIPV) in the Laboratory and Field. Journal of Chemical Ecology, 2016, 42, 1259-1264.	0.9	5
83	Cultivation and domestication of highbush blueberry (Vaccinium corymbosum) alters abundance, diversity and virulence of entomopathogenic nematodes. Agriculture, Ecosystems and Environment, 2016, 222, 148-155.	2.5	7
84	Floral Scent Mimicry and Vector-Pathogen Associations in a Pseudoflower-Inducing Plant Pathogen System. PLoS ONE, 2016, 11, e0165761.	1.1	22
85	Assessing the impact of cultivation and plant domestication of highbush blueberry (Vaccinium) Tj ETQq1 1 0.784 and Biochemistry, 2015, 88, 25-28.	314 rgBT / 4.2	/Overlock 10 11
86	Multistate Comparison of Attractants for Monitoring Drosophila suzukii (Diptera: Drosophilidae) in Blueberries and Caneberries. Environmental Entomology, 2015, 44, 704-712.	0.7	137
87	Attraction of the Invasive Halyomorpha halys (Hemiptera: Pentatomidae) to Traps Baited with Semiochemical Stimuli Across the United States. Environmental Entomology, 2015, 44, 746-756.	0.7	86
88	Sucrose Improves Insecticide Activity Against Drosophila suzukii (Diptera: Drosophilidae). Journal of Economic Entomology, 2015, 108, 640-653.	0.8	57
89	Characterizing Damage of Brown Marmorated Stink Bug (Hemiptera: Pentatomidae) in Blueberries. Journal of Economic Entomology, 2015, 108, 1156-1163.	0.8	28
90	Domestication in Murtilla (Ugni molinae) Reduced Defensive Flavonol Levels but Increased Resistance Against a Native Herbivorous Insect. Environmental Entomology, 2015, 44, 627-637.	0.7	28

#	Article	IF	CITATIONS
91	Development and characterization of 12 microsatellite loci from the blueberry gall midge Dasineura oxycoccana (Diptera: Cecidomyiidae). Applied Entomology and Zoology, 2015, 50, 415-418.	0.6	7
92	Behavioral and Antennal Responses of Drosophila suzukii (Diptera: Drosophilidae) to Volatiles From Fruit Extracts. Environmental Entomology, 2015, 44, 356-367.	0.7	92
93	CONTROL OF SPOTTED WING DROSOPHILA ON HIGHBUSH BLUEBERRIES, 2013. Arthropod Management Tests, 2014, 39, .	0.1	0
94	APHID CONTROL ON BLUEBERRIES, 2013. Arthropod Management Tests, 2014, 39, .	0.1	0
95	Development of Specialized Pheromone and Lure Application Technologies (SPLAT®) for Management of Coleopteran Pests in Agricultural and Forest Systems. ACS Symposium Series, 2014, , 211-242.	0.5	19
96	Biology, Ecology, and Management of Brown Marmorated Stink Bug (Hemiptera: Pentatomidae). Journal of Integrated Pest Management, 2014, 5, 1-13.	0.9	320
97	Female Moth Calling and Flight Behavior Are Altered Hours Following Pheromone Autodetection: Possible Implications for Practical Management with Mating Disruption. Insects, 2014, 5, 459-473.	1.0	29
98	Mitigating the effects of insecticides on arthropod biological control at field and landscape scales. Biological Control, 2014, 75, 28-38.	1.4	130
99	Longâ€term evaluation of fieldâ€wide oriental beetle (<scp>C</scp> ol., <scp>S</scp> carabaeidae) mating disruption in blueberries using femaleâ€mimic pheromone lures. Journal of Applied Entomology, 2014, 138, 120-132.	0.8	6
100	Relative Toxicity and Residual Activity of Insecticides Used in Blueberry Pest Management: Mortality of Natural Enemies. Journal of Economic Entomology, 2014, 107, 277-285.	0.8	84
101	Pest Status of the Brown Marmorated Stink Bug, <i>Halyomorpha Halys</i> in the USA. Outlooks on Pest Management, 2012, 23, 218-226.	0.1	296
102	Effect of trap color and height on captures of blunt-nosed and sharp-nosed leafhoppers (Hemiptera:) Tj ETQq0 0 C) rgBT /Ov	erlock 10 Tf !
103	Subterranean, Herbivore-Induced Plant Volatile Increases Biological Control Activity of Multiple Beneficial Nematode Species in Distinct Habitats. PLoS ONE, 2012, 7, e38146.	1.1	99
104	Variation in highbush blueberry floral volatile profiles as a function of pollination status, cultivar, time of day and flower part: implications for flower visitation by bees. Annals of Botany, 2011, 107, 1377-1390.	1.4	85
105	APHID AND GALL MIDGE CONTROL IN BLUEBERRIES, 2009. Arthropod Management Tests, 2011, 36, .	0.1	1
106	CONTROL OF CRANBERRY WEEVIL IN HIGHBUSH BLUEBERRIES, 2010. Arthropod Management Tests, 2011, 36,	0.1	0
107	SPOTTED FIREWORM CONTROL IN CRANBERRIES, 2010. Arthropod Management Tests, 2011, 36, .	0.1	0
108	Field responses of predaceous arthropods to methyl salicylate: A meta-analysis and case study in cranberries. Biological Control, 2011, 59, 294-303.	1.4	126

#	Article	IF	Citations
109	Identification and Field Evaluation of Attractants for the Cranberry Weevil, Anthonomus musculus Say. Journal of Chemical Ecology, 2011, 37, 387-397.	0.9	32
110	Tracing the history of plant traits under domestication in cranberries: potential consequences on anti-herbivore defences. Journal of Experimental Botany, 2011, 62, 2633-2644.	2.4	116
111	Behavioral and Electrophysiological Responses of <l>Listronotus maculicollis</l> (Coleoptera: Curculionidae) to Volatiles From Intact and Mechanically Damaged Annual Bluegrass. Environmental Entomology, 2011, 40, 412-419.	0.7	17
112	Plant Volatiles Influence Electrophysiological and Behavioral Responses of Lygus hesperus. Journal of Chemical Ecology, 2010, 36, 467-478.	0.9	61
113	Molecular, Biochemical, and Organismal Analyses of Tomato Plants Simultaneously Attacked by Herbivores from Two Feeding Guilds. Journal of Chemical Ecology, 2010, 36, 1043-1057.	0.9	123
114	Color preference, seasonality, spatial distribution and species composition of thrips (Thysanoptera:) Tj ETQq0 0 (orgBT /Ov	erlock 10 Tf 5
115	A metaâ€analysis of insect pest behavioral manipulation with plant volatiles. Entomologia Experimentalis Et Applicata, 2010, 134, 201-210.	0.7	131
116	SPLAT-OrB Reveals Competitive Attraction as a Mechanism of Mating Disruption in Oriental Beetle (Coleoptera: Scarabaeidae). Environmental Entomology, 2010, 39, 1980-1989.	0.7	12
117	New evidence for a multi-functional role of herbivore-induced plant volatiles in defense against herbivores. Plant Signaling and Behavior, 2010, 5, 58-60.	1.2	23
118	Response of Cranberry Weevil (Coleoptera: Curculionidae) to Host Plant Volatiles. Environmental Entomology, 2009, 38, 861-869.	0.7	38
119	Molecular Diagnostic for Boll Weevil (Coleoptera: Curculionidae) Based on Amplification of Three Species-Specific Microsatellites. Journal of Economic Entomology, 2009, 102, 759-766.	0.8	5
120	Optimization of Pheromone Deployment for Effective Mating Disruption of Oriental Beetle (Coleoptera: Scarabaeidae) in Commercial Blueberries. Journal of Economic Entomology, 2009, 102, 659-669.	0.8	15
121	Herbivore-Induced Volatiles in the Perennial Shrub, Vaccinium corymbosum, and Their Role in Inter-branch Signaling. Journal of Chemical Ecology, 2009, 35, 163-175.	0.9	145
122	Sex Pheromone of the Scarab Beetle Phyllophaga (Phytalus) georgiana (Horn). Journal of Chemical Ecology, 2009, 35, 336-341.	0.9	13
123	EAG-Active Herbivore-Induced Plant Volatiles Modify Behavioral Responses and Host Attack by An Egg Parasitoid. Journal of Chemical Ecology, 2008, 34, 1190-1201.	0.9	60
124	Evaluation of color traps for monitoring Lygus spp.: Design, placement, height, time of day, and non-target effects. Crop Protection, 2008, 27, 171-181.	1.0	43
125	CONTROL OF THRIPS ON HIGHBUSH BLUEBERRIES, 2006. Arthropod Management Tests, 2008, 33, .	0.1	0
126	CONTROL OF BLUEBERRY BLOSSOM WEEVIL ON BLUEBERRIES, 2006. Arthropod Management Tests, 2008, 33, .	0.1	0

#	Article	IF	CITATIONS
127	CONTROL OF BLUNT-NOSED LEAFHOPPER CONTROL ON CRANBERRIES, 2006. Arthropod Management Tests, 2008, 33, .	0.1	O
128	Behavioral and electrophysiological responses of the emerald ash borer, Agrilus planipennis, to induced volatiles of Manchurian ash, Fraxinus mandshurica. Chemoecology, 2006, 16, 75-86.	0.6	124
129	The jasmonate pathway alters herbivore feeding behaviour: consequences for plant defences. Entomologia Experimentalis Et Applicata, 2005, 115, 125-134.	0.7	35
130	Induced plant responses to multiple damagers: differential effects on an herbivore and its parasitoid. Oecologia, 2005, 143, 566-577.	0.9	145
131	Herbivore-induced responses and patch heterogeneity affect abundance of arthropods on plants. Ecological Entomology, 2005, 30, 156-163.	1.1	27
132	Volatile emissions triggered by multiple herbivore damage: beet armyworm and whitefly feeding on cotton plants. Journal of Chemical Ecology, 2003, 29, 2539-2550.	0.9	115
133	Lygus hesperus feeding and salivary gland extracts induce volatile emissions in plants. Journal of Chemical Ecology, 2002, 28, 1733-1747.	0.9	78
134	Exogenous methyl jasmonate induces volatile emissions in cotton plants. Journal of Chemical Ecology, 2001, 27, 679-695.	0.9	150
135	Secretory avocado idioblast oil cells: evidence of their defensive role against a non-adapted insect herbivore. Entomologia Experimentalis Et Applicata, 2000, 94, 183-194.	0.7	12
136	Avocadofurans and Their Tetrahydrofuran Analogues:Â Comparison of Growth Inhibitory and Insecticidal Activity. Journal of Agricultural and Food Chemistry, 2000, 48, 3642-3645.	2.4	20
137	Biologically Active Aliphatic Acetogenins from Specialized Idioblast Oil Cells. Current Organic Chemistry, 2000, 4, 1249-1260.	0.9	33
138	Temperature-Dependent Effects on Development, Mortality, and Growth of Hippodamia convergens (Coleoptera: Coccinellidae). Environmental Entomology, 1999, 28, 518-522.	0.7	31
139	Novel Antifeedant and Insecticidal Compounds from Avocado Idioblast Cell Oil. Journal of Chemical Ecology, 1998, 24, 867-889.	0.9	25
140	Growth Inhibitory, Insecticidal, and Feeding Deterrent Effects of (12Z,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 227 exigua. Journal of Chemical Ecology, 1997, 23, 1819-1831.	Td (15Z)-1 0.9	-Acetoxy-2-l 15
141	Toxicity, Growth, and Behavioral Effects of an Oil Extracted from Idioblast Cells of the Avocado Fruit on the Generalist Herbivore Beet Armyworm (Lepidoptera: Noctuidae). Journal of Economic Entomology, 1996, 89, 1571-1576.	0.8	14
142	C11. Arthropod Management Tests, 0, 37, .	0.1	0
143	Manipulation of Natural Enemies in Agroecosystems: Habitat and Semiochemicals for Sustainable Insect Pest Control. , 0, , .		31