
Vibha Rani Satsangi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/425095/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanostructured bilayered thin films in photoelectrochemical water splitting – A review. International Journal of Hydrogen Energy, 2012, 37, 18713-18730.	7.1	193
2	Electrodeposited zirconium-doped α-Fe2O3 thin film for photoelectrochemical water splitting. International Journal of Hydrogen Energy, 2011, 36, 2777-2784.	7.1	175
3	Spray pyrolytically deposited nanoporous Ti4+ doped hematite thin films for efficient photoelectrochemical splitting of water. International Journal of Hydrogen Energy, 2010, 35, 3985-3990.	7.1	99
4	Improved Photoelectrochemical Water Splitting Performance of Cu ₂ O/SrTiO ₃ Heterojunction Photoelectrode. Journal of Physical Chemistry C, 2014, 118, 25320-25329.	3.1	86
5	A study on 170 MeV Au13+ irradiation induced modifications in structural and photoelectrochemical behavior of nanostructured CuO thin films. Nuclear Instruments & Methods in Physics Research B, 2004, 225, 291-296.	1.4	76
6	Enhanced Photoelectrochemical Response of BaTiO ₃ with Fe Doping: Experiments and First-Principles Analysis. Journal of Physical Chemistry C, 2011, 115, 24373-24380.	3.1	75
7	Quantum dots sensitization for photoelectrochemical generation of hydrogen: A review. Renewable and Sustainable Energy Reviews, 2017, 68, 19-27.	16.4	73
8	Nanostructured Ti-Fe2O3/Cu2O heterojunction photoelectrode for efficient hydrogen production. Thin Solid Films, 2015, 574, 125-131.	1.8	59
9	Nanostructured BaTiO3/Cu2O heterojunction with improved photoelectrochemical activity for H2 evolution: Experimental and first-principles analysis. Applied Catalysis B: Environmental, 2016, 189, 75-85.	20.2	51
10	Understanding the photoelectrochemical properties of nanostructured CeO2/Cu2O heterojunction photoanode for efficient photoelectrochemical water splitting. International Journal of Hydrogen Energy, 2016, 41, 18339-18350.	7.1	48
11	Photoactivity of MWCNTs modified α-Fe2O3 photoelectrode towards efficient solar water splitting. Renewable Energy, 2015, 83, 447-454.	8.9	44
12	Irradiation-induced modifications and PEC response – A case study of SrTiO3 thin films irradiated by 120ÂMeV Ag9+ ions. International Journal of Hydrogen Energy, 2011, 36, 5236-5245.	7.1	43
13	Nanostructured SrTiO3 thin films sensitized by Cu2O for photoelectrochemical hydrogen generation. International Journal of Hydrogen Energy, 2014, 39, 4189-4197.	7.1	40
14	Gradient doping – a case study with Ti-Fe ₂ O ₃ towards an improved photoelectrochemical response. Physical Chemistry Chemical Physics, 2016, 18, 32735-32743.	2.8	40
15	A photoelectrochemical study of nanostructured Cd-doped titanium oxide. International Journal of Hydrogen Energy, 2007, 32, 1299-1302.	7.1	39
16	CNT based photoelectrodes for PEC generation of hydrogen: A review. International Journal of Hydrogen Energy, 2017, 42, 3994-4006.	7.1	39
17	Synergistic effect of CdSe quantum dots on photoelectrochemical response of electrodeposited α-Fe2O3 films. Journal of Power Sources, 2014, 267, 664-672.	7.8	35
18	ZnO thin films, surface embedded with biologically derived Ag/Au nanoparticles, for efficient photoelectrochemical splitting of water. International Journal of Hydrogen Energy, 2014, 39, 18216-18229.	7.1	34

Vibha Rani Satsangi

#	Article	IF	CITATIONS
19	Enhanced photoelectrochemical response of plasmonic Au embedded BiVO ₄ /Fe ₂ O ₃ heterojunction. Physical Chemistry Chemical Physics, 2017, 19, 15039-15049.	2.8	34
20	Improved charge transportation at PbS QDs/TiO ₂ interface for efficient PEC hydrogen generation. Physical Chemistry Chemical Physics, 2016, 18, 15815-15821.	2.8	33
21	Improved photoelectrochemical response of haematite by high energy Ag ⁹⁺ ions irradiation. Journal Physics D: Applied Physics, 2009, 42, 085303.	2.8	30
22	Nanostructured Zn-Fe2O3 thin film modified by Fe-TiO2 for photoelectrochemical generation of hydrogen. International Journal of Hydrogen Energy, 2010, 35, 10883-10889.	7.1	30
23	Morphological, optical and photoelectrochemical properties of Fe2O3–GNP composite thin films. RSC Advances, 2014, 4, 17671.	3.6	29
24	Plasmonic layer enhanced photoelectrochemical response of Fe2O3 photoanodes. Journal of Power Sources, 2016, 315, 152-160.	7.8	28
25	Enhancing efficiency of Fe2O3 for robust and proficient solar water splitting using a highly dispersed bioinspired catalyst. Journal of Catalysis, 2017, 352, 83-92.	6.2	28
26	Efficient hydrogen generation on CuO core/Ag TiO2 shell nano-hetero-structures by photocatalytic splitting of water. Renewable Energy, 2019, 136, 1202-1216.	8.9	28
27	Enhanced photoelectrochemical conversion performance of ZnO quantum dots sensitized α-Fe 2 O 3 thin films. International Journal of Hydrogen Energy, 2015, 40, 5583-5592.	7.1	27
28	CdSe quantum dots sensitized nanoporous hematite for photoelectrochemical generation of hydrogen. International Journal of Hydrogen Energy, 2014, 39, 11860-11866.	7.1	26
29	Enhanced Photoelectrochemical Response of Zn-Dotted Hematite. International Journal of Photoenergy, 2007, 2007, 1-6.	2.5	25
30	Enhanced photoelectrochemical properties of 100MeV Si8+ ion irradiated barium titanate thin films. Journal of Alloys and Compounds, 2013, 561, 114-120.	5.5	25
31	Surface deposition of Ag and Au nano-isles on ZnO thin films yields enhanced photoelectrochemical splitting of water. Journal of Applied Electrochemistry, 2015, 45, 299-312.	2.9	25
32	Nano-hetero-structured thin films, ZnO/Ag-(α)Fe2O3, with n/n junction, as efficient photoanode for renewable hydrogen generation via photoelectrochemical water splitting. Renewable Energy, 2021, 164, 156-170.	8.9	25
33	Nanostructured CuO/SrTiO3 bilayered thin films for photoelectrochemical water splitting. Journal of Solid State Electrochemistry, 2013, 17, 2531-2538.	2.5	24
34	A study on the effect of low energy ion beam irradiation on Au/TiO2 system for its application in photoelectrochemical splitting of water. Nuclear Instruments & Methods in Physics Research B, 2016, 379, 255-261.	1.4	24
35	Photoelectrochemical performance of bilayered Fe–TiO2/Zn–Fe2O3 thin films for solar generation of hydrogen. Journal of Solid State Electrochemistry, 2012, 16, 1305-1312.	2.5	23
36	Experimental and first-principles theoretical studies on Ag-doped cuprous oxide as photocathode in photocelectrochemical splitting of water. Journal of Materials Science, 2014, 49, 868-876.	3.7	22

#	Article	IF	CITATIONS
37	Photoelectrochemical splitting of water with nanocrystalline Zn1â^'xMnxO thin films: First-principle DFT computations supporting the systematic experimental endeavor. International Journal of Hydrogen Energy, 2014, 39, 3637-3648.	7.1	22
38	Electronic band-offsets across Cu2O/BaZrO3 heterojunction and its stable photo-electro-chemical response: First-principles theoretical analysis and experimental optimization. Renewable Energy, 2017, 113, 503-511.	8.9	22
39	Nanostructured Ni:BiVO4 photoanode in photoelectrochemical water splitting for hydrogen generation. International Journal of Hydrogen Energy, 2020, 45, 26746-26757.	7.1	22
40	Electrodeposition and sol–gel derived nanocrystalline N–ZnO thin films for photoelectrochemical splitting of water: Exploring the role of microstructure. Renewable Energy, 2014, 69, 242-252.	8.9	21
41	MWCNTs and Cu2O sensitized Ti Fe2O3 photoanode for improved water splitting performance. International Journal of Hydrogen Energy, 2018, 43, 6049-6059.	7.1	20
42	A study on 170MeV Au13+ irradiated nanostructured metal oxide (Fe2O3 and CuO) thin films for PEC applications. Nuclear Instruments & Methods in Physics Research B, 2006, 244, 128-131.	1.4	19
43	Nano Porous Hematite for Solar Hydrogen Production. Journal of the Electrochemical Society, 2012, 159, H685-H691.	2.9	19
44	Modified structural, morphological and photoelectrochemical properties of 120ÂMeV Ag9+ ion irradiated BaTiO3 thin films. Current Applied Physics, 2013, 13, 344-350.	2.4	17
45	Spray pyrolytically deposited Fe-doped Cu2O thin films for solar hydrogen generation: Experiments & first-principles analysis. Materials Chemistry and Physics, 2015, 160, 32-39.	4.0	16
46	Role and prospects of green quantum dots in photoelectrochemical hydrogen generation: A review. International Journal of Hydrogen Energy, 2022, 47, 11472-11491.	7.1	16
47	Photoelectrochemical generation of hydrogen using 100ÂMev Si8+ ion irradiated electrodeposited iron oxide thin films. International Journal of Hydrogen Energy, 2012, 37, 3626-3632.	7.1	14
48	3D-nano-hetero-structured n/n junction, CuO/Ru–ZnO thin films, for hydrogen generation with enhanced photoelectrochemical performances. International Journal of Hydrogen Energy, 2020, 45, 21051-21067.	7.1	14
49	Augmented photoelectrochemical response of CdS/ZnS quantum dots sensitized hematite photoelectrode. International Journal of Energy Research, 2016, 40, 1811-1819.	4.5	13
50	Effect of morphology and impact of the electrode/electrolyte interface on the PEC response of Fe ₂ O ₃ based systems – comparison of two preparation techniques. RSC Advances, 2020, 10, 42256-42266.	3.6	13
51	Nanocrystalline Zn1â~'x Ag x O y thin films evolved through electrodeposition for photoelectrochemical splitting of water. Journal of Solid State Electrochemistry, 2014, 18, 523-533.	2.5	12
52	Morphological influence of electrode/electrolyte interface towards augmenting the efficiency of photoelectrochemical water splitting – A case study on ZnO. Journal of Power Sources, 2019, 432, 38-47.	7.8	11
53	Chemically etched ZnO thin films, with surface-evolved nano-ridges, for efficient photoelectrochemical splitting of water. Journal of Solid State Electrochemistry, 2015, 19, 1311-1320.	2.5	10
54	Expanded light-absorption and efficient charge-separation: bilayered thin film nano-hetero-structures, CuO/Cu–ZnO, make efficient photoanode in photoelectrochemical water splitting. Journal of Applied Electrochemistry, 2020, 50, 887-906.	2.9	10

#	Article	IF	CITATIONS
55	Zr–W Co-doping in BiVO4 – Synergistic effect in photoelectrochemical water splitting. Materials Chemistry and Physics, 2021, 267, 124675.	4.0	9
56	N–TiO2 crystal seeds incorporated in amorphous matrix for enhanced solar hydrogen generation: Experimental & first-principles analysis. International Journal of Hydrogen Energy, 2022, 47, 22415-22429.	7.1	9
57	Experimental and first-principles studies of BiVO4/BiV1-xMnxO4-y n-n+ homojunction for efficient charge carrier separation in sunlight induced water splitting. International Journal of Hydrogen Energy, 2018, 43, 15815-15822.	7.1	8
58	Integrating PbS Quantum Dots with Hematite for Efficient Photoelectrochemical Hydrogen Production. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800839.	1.8	6
59	BiVO ₄ /Fe ₂ O ₃ /ZnFe ₂ O ₄ ; triple heterojunction for an enhanced PEC performance for hydrogen generation. RSC Advances, 2022, 12, 12552-12563.	3.6	6
60	PHOTOELECTROCHEMICAL WATER SPLITTING USING BILAYERED ZnO/SrTiO3 PHOTOELECTRODES. International Journal of Modern Physics Conference Series, 2013, 22, 545-551.	0.7	4
61	Photoelectrochemical performance of CuO electrodes by surface modification with ZnO in water splitting process. AIP Conference Proceedings, 2016, , .	0.4	4
62	Zn1â^'xFexOy nanocomposites for renewable hydrogen produced efficiently via photoelectrochemical vis-a-vis photocatalytic splitting of water. SN Applied Sciences, 2019, 1, 1.	2.9	2
63	Wide Band Gap Quantum Dots Sensitized α-Fe2O3 Thin Film for Solar Generation of Hydrogen. Materials Research Society Symposia Proceedings, 2015, 1738, 54.	0.1	2
64	Ni-Doped Cu ₂ 0 Thin Films for Solar-Hydrogen Generation: Experiments and First-Principles Analysis. Advanced Science Letters, 2016, 22, 780-784.	0.2	2
65	Effect of 100ÂKeV Ar+ ion beam irradiation on ZnO thin films – Influence of morphology vis-a-vis electrode/electrolyte interface and its impact on photoelectrochemical water splitting. International Journal of Hydrogen Energy, 2021, 46, 20858-20870.	7.1	1
66	Structural, Morphological and Photoelectrochemical Behavior of Hematite Modified by 120 MeV Ag9+ Ions. Materials Research Society Symposia Proceedings, 2009, 1217, 1.	0.1	0
67	MWCNTs incorporated nanostructured Bismuth Vanadate for solar energy induced water splitting for hydrogen generation. Materials Today: Proceedings, 2021, , .	1.8	0