
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4250884/publications.pdf Version: 2024-02-01

Ρεήδλ<mark>Μ Ε</mark>λτεμι

#	Article	IF	CITATIONS
1	Transitionâ€Metal (Fe, Co, Ni) Based Metalâ€Organic Frameworks for Electrochemical Energy Storage. Advanced Energy Materials, 2017, 7, 1602733.	10.2	711
2	Transition Metal Sulfides Based on Graphene for Electrochemical Energy Storage. Advanced Energy Materials, 2018, 8, 1703259.	10.2	679
3	Production and Application of Lignosulfonates and Sulfonated Lignin. ChemSusChem, 2017, 10, 1861-1877.	3.6	496
4	A highly alkaline-stable metal oxide@metal–organic framework composite for high-performance electrochemical energy storage. National Science Review, 2020, 7, 305-314.	4.6	487
5	Rechargeable zinc–air batteries: a promising way to green energy. Journal of Materials Chemistry A, 2017, 5, 7651-7666.	5.2	432
6	Facile synthesis of an accordion-like Ni-MOF superstructure for high-performance flexible supercapacitors. Journal of Materials Chemistry A, 2016, 4, 19078-19085.	5.2	411
7	Transition metal oxides with one-dimensional/one-dimensional-analogue nanostructures for advanced supercapacitors. Journal of Materials Chemistry A, 2017, 5, 8155-8186.	5.2	394
8	Applications of Metal–Organicâ€Frameworkâ€Derived Carbon Materials. Advanced Materials, 2019, 31, e1804740.	11.1	369
9	Ultrathin Nickel–Cobalt Phosphate 2D Nanosheets for Electrochemical Energy Storage under Aqueous/Solidâ€5tate Electrolyte. Advanced Functional Materials, 2017, 27, 1605784.	7.8	368
10	Rational Design and General Synthesis of Multimetallic Metal–Organic Framework Nanoâ€Octahedra for Enhanced Li–S Battery. Advanced Materials, 2021, 33, e2105163.	11.1	324
11	Encapsulating highly catalytically active metal nanoclusters inside porous organic cages. Nature Catalysis, 2018, 1, 214-220.	16.1	310
12	Nitrogenâ€Ðoped Cobalt Oxide Nanostructures Derived from Cobalt–Alanine Complexes for Highâ€Performance Oxygen Evolution Reactions. Advanced Functional Materials, 2018, 28, 1800886.	7.8	302
13	Lignin–carbohydrate complexes: properties, applications, analyses, and methods of extraction: a review. Biotechnology for Biofuels, 2018, 11, 269.	6.2	302
14	MOFâ€Derived Metal Oxide Composites for Advanced Electrochemical Energy Storage. Small, 2018, 14, e1704435.	5.2	297
15	MXeneâ€Copper/Cobalt Hybrids via Lewis Acidic Molten Salts Etching for High Performance Symmetric Supercapacitors. Angewandte Chemie - International Edition, 2021, 60, 25318-25322.	7.2	295
16	Metal–organic framework composites and their electrochemical applications. Journal of Materials Chemistry A, 2019, 7, 7301-7327.	5.2	284
17	High performance electrochemical capacitor materials focusing on nickel based materials. Inorganic Chemistry Frontiers, 2016, 3, 175-202.	3.0	283
18	Nanoparticle/MOF composites: preparations and applications. Materials Horizons, 2017, 4, 557-569.	6.4	262

#	Article	IF	CITATIONS
19	Metal–organic frameworks for lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 3469-3491.	5.2	259
20	In Situ Anchoring Polymetallic Phosphide Nanoparticles within Porous Prussian Blue Analogue Nanocages for Boosting Oxygen Evolution Catalysis. Nano Letters, 2021, 21, 3016-3025.	4.5	250
21	Ultrathin two-dimensional cobalt–organic framework nanosheets for high-performance electrocatalytic oxygen evolution. Journal of Materials Chemistry A, 2018, 6, 22070-22076.	5.2	249
22	A Review of MOFs and Their Compositesâ€Based Photocatalysts: Synthesis and Applications. Advanced Functional Materials, 2021, 31, 2104231.	7.8	243
23	Superlong Single-Crystal Metal–Organic Framework Nanotubes. Journal of the American Chemical Society, 2018, 140, 15393-15401.	6.6	230
24	A Simple Approach to Boost Capacitance: Flexible Supercapacitors Based on Manganese Oxides@MOFs via Chemically Induced In Situ Selfâ€Transformation. Advanced Materials, 2016, 28, 5242-5248.	11.1	229
25	Ni and NiO Nanoparticles Decorated Metal–Organic Framework Nanosheets: Facile Synthesis and High-Performance Nonenzymatic Glucose Detection in Human Serum. ACS Applied Materials & Interfaces, 2017, 9, 22342-22349.	4.0	229
26	Metalâ€Organic Frameworks/Grapheneâ€Based Materials: Preparations and Applications. Advanced Functional Materials, 2018, 28, 1804950.	7.8	219
27	Carbon nanotube-based materials for lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 17204-17241.	5.2	214
28	In Situ Growth of Threeâ€Dimensional MXene/Metal–Organic Framework Composites for Highâ€Performance Supercapacitors. Angewandte Chemie - International Edition, 2022, 61, .	7.2	211
29	MILâ€96â€Al for Li–S Batteries: Shape or Size?. Advanced Materials, 2022, 34, e2107836.	11.1	205
30	Graphitic carbon nitride based materials for electrochemical energy storage. Journal of Materials Chemistry A, 2019, 7, 901-924.	5.2	178
31	Ultrafast adsorption of heavy metal ions onto functionalized lignin-based hybrid magnetic nanoparticles. Chemical Engineering Journal, 2019, 372, 82-91.	6.6	176
32	Metalâ€Organic Frameworkâ€Derived Carbons for Battery Applications. Advanced Energy Materials, 2018, 8, 1800716.	10.2	174
33	Dual-ligand and hard-soft-acid-base strategies to optimize metal-organic framework nanocrystals for stable electrochemical cycling performance. National Science Review, 2022, 9, .	4.6	171
34	Metal (M = Co, Ni) phosphate based materials for high-performance supercapacitors. Inorganic Chemistry Frontiers, 2018, 5, 11-28.	3.0	169
35	Twoâ€Ðimensional MOF and COF Nanosheets: Synthesis and Applications in Electrochemistry. Chemistry - A European Journal, 2020, 26, 6402-6422.	1.7	168
36	Facile Synthesis of Vanadium Metalâ€Organic Frameworks for Highâ€Performance Supercapacitors. Small, 2018, 14, e1801815.	5.2	167

#	Article	IF	CITATIONS
37	N,S co-doped 3D mesoporous carbon–Co ₃ Si ₂ O ₅ (OH) ₄ architectures for high-performance flexible pseudo-solid-state supercapacitors. Journal of Materials Chemistry A, 2017, 5, 12774-12781.	5.2	160
38	Applications of Tin Sulfideâ€Based Materials in Lithiumâ€Ion Batteries and Sodiumâ€Ion Batteries. Advanced Functional Materials, 2020, 30, 2001298.	7.8	154
39	Noble metal-based materials in high-performance supercapacitors. Inorganic Chemistry Frontiers, 2017, 4, 33-51.	3.0	151
40	Syntheses and Energy Storage Applications of M <i>_x</i> S <i>_y</i> (M = Cu, Ag,) Tj ETQ Materials, 2017, 27, 1703949.	90000rg 7.8	BT /Overlock 142
41	Recent Progress in Some Amorphous Materials for Supercapacitors. Small, 2018, 14, e1800426.	5.2	140
42	Redox-active triazatruxene-based conjugated microporous polymers for high-performance supercapacitors. Chemical Science, 2017, 8, 2959-2965.	3.7	136
43	Polypyrrole coated hollow metal–organic framework composites for lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 19465-19470.	5.2	136
44	High performance of electrochemical lithium storage batteries: ZnO-based nanomaterials for lithium-ion and lithium–sulfur batteries. Nanoscale, 2016, 8, 18578-18595.	2.8	134
45	Grafting strategies for hydroxy groups of lignin for producing materials. Green Chemistry, 2019, 21, 5714-5752.	4.6	134
46	Recent development of biomass-derived carbons and composites as electrode materials for supercapacitors. Materials Chemistry Frontiers, 2019, 3, 2543-2570.	3.2	130
47	The application of CeO ₂ -based materials in electrocatalysis. Journal of Materials Chemistry A, 2019, 7, 17675-17702.	5.2	128
48	The synthesis and electrochemical applications of core–shell MOFs and their derivatives. Journal of Materials Chemistry A, 2019, 7, 15519-15540.	5.2	126
49	Fabrication, characteristics and applications of carbon materials with different morphologies and porous structures produced from wood liquefaction: A review. Chemical Engineering Journal, 2019, 364, 226-243.	6.6	125
50	Applications of Cellulose-based Materials in Sustained Drug Delivery Systems. Current Medicinal Chemistry, 2019, 26, 2485-2501.	1.2	120
51	Amorphous Intermediate Derivative from ZIFâ€67 and Its Outstanding Electrocatalytic Activity. Small, 2020, 16, e1904252.	5.2	120
52	A biomimetic chiral-driven ionic gate constructed by pillar[6]arene-based host–guest systems. Nature Communications, 2018, 9, 2617.	5.8	119
53	Smart Yolk/Shell ZIF-67@POM Hybrids as Efficient Electrocatalysts for the Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 5027-5033.	3.2	119
54	Design of hollow carbon-based materials derived from metal–organic frameworks for electrocatalysis and electrochemical energy storage. Journal of Materials Chemistry A, 2021, 9, 3880-3917.	5.2	117

#	Article	IF	CITATIONS
55	In Situ Synthesis of MOFâ€74 Family for High Areal Energy Density of Aqueous Nickel–Zinc Batteries. Advanced Materials, 2022, 34, e2201779.	11.1	117
56	Tungstenâ€Based Materials for Lithiumâ€ion Batteries. Advanced Functional Materials, 2018, 28, 1707500.	7.8	114
57	Core–shell-type ZIF-8@ZIF-67@POM hybrids as efficient electrocatalysts for the oxygen evolution reaction. Inorganic Chemistry Frontiers, 2019, 6, 2514-2520.	3.0	113
58	A novel strategy for the synthesis of highly stable ternary SiO _x composites for Li-ion-battery anodes. Journal of Materials Chemistry A, 2019, 7, 15969-15974.	5.2	112
59	Separation of lignocellulosic materials by combined processes of pre-hydrolysis and ethanol extraction. Bioresource Technology, 2011, 102, 1264-1269.	4.8	111
60	Fabrication of Metal Molybdate Micro/Nanomaterials for Electrochemical Energy Storage. Small, 2017, 13, 1700917.	5.2	110
61	When Conductive MOFs Meet MnO ₂ : High Electrochemical Energy Storage Performance in an Aqueous Asymmetric Supercapacitor. ACS Applied Materials & Interfaces, 2021, 13, 33083-33090.	4.0	109
62	Nanostructured Germanium Anode Materials for Advanced Rechargeable Batteries. Advanced Materials Interfaces, 2017, 4, 1600798.	1.9	107
63	Facile Synthesis of Ultrathin Nickel–Cobalt Phosphate 2D Nanosheets with Enhanced Electrocatalytic Activity for Glucose Oxidation. ACS Applied Materials & Interfaces, 2018, 10, 2360-2367.	4.0	106
64	Anchoring ZIF-67 particles on amidoximerized polyacrylonitrile fibers for radionuclide sequestration in wastewater and seawater. Journal of Hazardous Materials, 2020, 395, 122692.	6.5	104
65	Exposing {001} Crystal Plane on Hexagonal Niâ€MOF with Surfaceâ€Grown Crossâ€Linked Meshâ€Structures for Electrochemical Energy Storage. Small, 2019, 15, e1902463.	5.2	103
66	Metal/Graphitic Carbon Nitride Composites: Synthesis, Structures, and Applications. Chemistry - an Asian Journal, 2016, 11, 3305-3328.	1.7	102
67	Recent advancements in the production of hydroxymethylfurfural. RSC Advances, 2014, 4, 2037-2050.	1.7	101
68	Preparation of cationic softwood kraft lignin and its application in dye removal. European Polymer Journal, 2015, 67, 335-345.	2.6	101
69	A Honeycombâ€Like Bulk Superstructure of Carbon Nanosheets for Electrocatalysis and Energy Storage. Angewandte Chemie - International Edition, 2020, 59, 19627-19632.	7.2	100
70	Water soluble kraft lignin–acrylic acid copolymer: synthesis and characterization. Green Chemistry, 2015, 17, 4355-4366.	4.6	99
71	Current Advances in Semiconductor Nanomaterialâ€Based Photoelectrochemical Biosensing. Chemistry - A European Journal, 2018, 24, 14010-14027.	1.7	97
72	Uniform manganese hexacyanoferrate hydrate nanocubes featuring superior performance for low-cost supercapacitors and nonenzymatic electrochemical sensors. Nanoscale, 2015, 7, 16012-16019.	2.8	95

#	Article	IF	CITATIONS
73	Si-based materials derived from biomass: synthesis and applications in electrochemical energy storage. Journal of Materials Chemistry A, 2019, 7, 22123-22147.	5.2	95
74	Production of carboxymethylated lignin and its application as a dispersant. European Polymer Journal, 2015, 70, 371-383.	2.6	94
75	Production of Water-Soluble Hardwood Kraft Lignin via Sulfomethylation Using Formaldehyde and Sodium Sulfite. ACS Sustainable Chemistry and Engineering, 2015, 3, 1172-1182.	3.2	94
76	Ï€â€Conjugated Molecule Boosts Metal–Organic Frameworks as Efficient Oxygen Evolution Reaction Catalysts. Small, 2018, 14, e1803576.	5.2	94
77	Applications of Metalâ€Organic Frameworks in Water Treatment: A Review. Small, 2022, 18, e2105715.	5.2	94
78	Hollow Structural Transition Metal Oxide for AdvancedÂSupercapacitors. Advanced Materials Interfaces, 2018, 5, 1701509.	1.9	93
79	A combined acidification/PEO flocculation process to improve the lignin removal from the pre-hydrolysis liquor of kraft-based dissolving pulp production process. Bioresource Technology, 2011, 102, 5177-5182.	4.8	92
80	Hierarchically nanostructured transition metal oxides for supercapacitors. Science China Materials, 2018, 61, 185-209.	3.5	90
81	Facile synthesis of amorphous aluminum vanadate hierarchical microspheres for supercapacitors. Inorganic Chemistry Frontiers, 2016, 3, 791-797.	3.0	88
82	Technical lignin and its potential modification routes: A mini-review. Industrial Crops and Products, 2020, 154, 112732.	2.5	88
83	Small sized Fe–Co sulfide nanoclusters anchored on carbon for oxygen evolution. Journal of Materials Chemistry A, 2019, 7, 15851-15861.	5.2	87
84	Copolymer derived micro/meso-porous carbon nanofibers with vacancy-type defects for high-performance supercapacitors. Journal of Materials Chemistry A, 2020, 8, 2463-2471.	5.2	86
85	Quasi-ZIF-67 for Boosted Oxygen Evolution Reaction Catalytic Activity via a Low Temperature Calcination. ACS Applied Materials & Interfaces, 2020, 12, 25037-25041.	4.0	86
86	Metalâ€Organic Frameworks Nanocomposites with Different Dimensionalities for Energy Conversion and Storage. Advanced Energy Materials, 2022, 12, 2100346.	10.2	86
87	Pillared-layer Ni-MOF nanosheets anchored on Ti3C2 MXene for enhanced electrochemical energy storage. Journal of Colloid and Interface Science, 2022, 614, 130-137.	5.0	86
88	A new strategy for the controllable growth of MOF@PBA architectures. Journal of Materials Chemistry A, 2019, 7, 17266-17271.	5.2	80
89	Ultrathin Cu-MOF@δ-MnO ₂ nanosheets for aqueous electrolyte-based high-voltage electrochemical capacitors. Journal of Materials Chemistry A, 2018, 6, 17329-17336.	5.2	79
90	Clean utilization of palm kernel shell: sustainable and naturally heteroatom-doped porous activated carbon for lithium–sulfur batteries. Rare Metals, 2020, 39, 1099-1106.	3.6	79

#	Article	IF	CITATIONS
91	Dual anode materials for lithium- and sodium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 4236-4259.	5.2	78
92	Applications of MxSey (M = Fe, Co, Ni) and Their Composites in Electrochemical Energy Storage and Conversion. Nano-Micro Letters, 2019, 11, 40.	14.4	78
93	Pristine Transitionâ€Metalâ€Based Metalâ€Organic Frameworks for Electrocatalysis. ChemElectroChem, 2019, 6, 1273-1299.	1.7	78
94	Synthesis of "Quasi-Ce-MOF―Electrocatalysts for Enhanced Urea Oxidation Reaction Performance. ACS Sustainable Chemistry and Engineering, 2020, 8, 8675-8680.	3.2	78
95	Sulfomethylated kraft lignin as a flocculant for cationic dye. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 503, 19-27.	2.3	77
96	Synthetic and lignin-based surfactants: Challenges and opportunities. Carbon Resources Conversion, 2018, 1, 126-138.	3.2	76
97	Isolation and cationization of hemicelluloses from pre-hydrolysis liquor of kraft-based dissolving pulp production process. Biomass and Bioenergy, 2011, 35, 1789-1796.	2.9	73
98	Ultrathin Nanobelts as an Excellent Bifunctional Oxygen Catalyst: Insight into the Subtle Changes in Structure and Synergistic Effects of Bimetallic Metal–Organic Framework. Small Methods, 2018, 2, 1800240.	4.6	73
99	Vanadium sulfide based materials: synthesis, energy storage and conversion. Journal of Materials Chemistry A, 2020, 8, 20781-20802.	5.2	73
100	Manipulation of Mottâ^'Schottky Ni/CeO ₂ Heterojunctions into Nâ€Doped Carbon Nanofibers for Highâ€Efficiency Electrochemical Water Splitting. Small, 2022, 18, e2106592.	5.2	73
101	Production of Flocculants, Adsorbents, and Dispersants from Lignin. Molecules, 2018, 23, 868.	1.7	72
102	Different positive electrode materials in organic and aqueous systems for aluminium ion batteries. Journal of Materials Chemistry A, 2019, 7, 14391-14418.	5.2	72
103	Fabrication Methods of Porous Carbon Materials and Separator Membranes for Lithium–Sulfur Batteries: Development and Future Perspectives. Small Methods, 2017, 1, 1700089.	4.6	69
104	Porous pyrrhotite Fe7S8 nanowire/SiO /nitrogen-doped carbon matrix for high-performance Li-ion-battery anodes. Journal of Colloid and Interface Science, 2020, 561, 801-807.	5.0	69
105	Oxidation of Kraft Lignin with Hydrogen Peroxide and its Application as a Dispersant for Kaolin Suspensions. ACS Sustainable Chemistry and Engineering, 2017, 5, 10597-10605.	3.2	67
106	Cobaltâ€Doped Nickel Phosphite for High Performance of Electrochemical Energy Storage. Small, 2018, 14, e1703811.	5.2	66
107	Synthesis and Progress of New Oxygenâ€Vacant Electrode Materials for Highâ€Energy Rechargeable Battery Applications. Small, 2018, 14, e1802193.	5.2	66
108	Porous rod-like Ni2P/Ni assemblies for enhanced urea electrooxidation. Nano Research, 2021, 14, 1405-1412.	5.8	65

#	Article	IF	CITATIONS
109	Metal–Organic Frameworkâ€Based Hybrid Frameworks. Small Structures, 2021, 2, 2000078.	6.9	65
110	Biopolymers for surface engineering of paper-based products. Cellulose, 2014, 21, 3145-3160.	2.4	64
111	Lignin for polymer and nanoparticle production: Current status and challenges. Canadian Journal of Chemical Engineering, 2019, 97, 2827-2842.	0.9	64
112	Bimetallic Metalâ€Organic Framework with Highâ€Adsorption Capacity toward Lithium Polysulfides for Lithium–sulfur Batteries. Energy and Environmental Materials, 2022, 5, 599-607.	7.3	64
113	Preparation of sulfomethylated softwood kraft lignin as a dispersant for cement admixture. RSC Advances, 2015, 5, 47031-47039.	1.7	63
114	Novel Process for Generating Cationic Lignin Based Flocculant. Industrial & Engineering Chemistry Research, 2018, 57, 6595-6608.	1.8	63
115	Fabrication of Cu ₂ Oâ€based Materials for Lithiumâ€ŀon Batteries. ChemSusChem, 2018, 11, 1581-1599.	3.6	62
116	Atomically Dispersed Mo Sites Anchored on Multichannel Carbon Nanofibers toward Superior Electrocatalytic Hydrogen Evolution. ACS Nano, 2021, 15, 20032-20041.	7.3	62
117	Production of cationic xylan–METAC copolymer as a flocculant for textile industry. Carbohydrate Polymers, 2015, 124, 229-236.	5.1	61
118	Enhanced Electrochemical Performance of Sb2O3 as an Anode for Lithium-Ion Batteries by a Stable Cross-Linked Binder. Applied Sciences (Switzerland), 2019, 9, 2677.	1.3	59
119	Synthetic methods and electrochemical applications for transition metal phosphide nanomaterials. RSC Advances, 2016, 6, 87188-87212.	1.7	58
120	Tin-based nanomaterials for electrochemical energy storage. RSC Advances, 2016, 6, 95449-95468.	1.7	58
121	Derivatives of coordination compounds for rechargeable batteries. Journal of Materials Chemistry A, 2018, 6, 13999-14024.	5.2	58
122	Ni/Co bimetallic organic framework nanosheet assemblies for high-performance electrochemical energy storage. Nanoscale, 2020, 12, 10685-10692.	2.8	58
123	Promoting performance of lithium–sulfur battery via in situ sulfur reduced graphite oxide coating. Rare Metals, 2021, 40, 417-424.	3.6	58
124	Interfacial Engineeringâ€Triggered Bifunctionality of CoS ₂ /MoS ₂ Nanocubes/Nanosheet Arrays for Highâ€Efficiency Overall Water Splitting. ChemSusChem, 2021, 14, 699-708.	3.6	58
125	Removal of inhibitors from pre-hydrolysis liquor of kraft-based dissolving pulp production process using adsorption and flocculation processes. Bioresource Technology, 2012, 116, 492-496.	4.8	57
126	Adsorption of lignocelluloses of model pre-hydrolysis liquor on activated carbon. Bioresource Technology, 2013, 131, 308-314.	4.8	57

#	Article	IF	CITATIONS
127	One Dimensional Silverâ€based Nanomaterials: Preparations and Electrochemical Applications. Small, 2017, 13, 1701091.	5.2	56
128	Chitosan as a flocculant for pre-hydrolysis liquor of kraft-based dissolving pulp production process. Carbohydrate Polymers, 2011, 86, 1630-1636.	5.1	55
129	Lignin-derived platform molecules through TEMPO catalytic oxidation strategies. Progress in Energy and Combustion Science, 2019, 72, 59-89.	15.8	55
130	Nitrogen-, phosphorus-doped carbon–carbon nanotube CoP dodecahedra by controlling zinc content for high-performance electrocatalytic oxygen evolution. Rare Metals, 2020, 39, 680-687.	3.6	55
131	Pyridine-modulated Ni/Co bimetallic metal-organic framework nanoplates for electrocatalytic oxygen evolution. Science China Materials, 2021, 64, 137-148.	3.5	55
132	Oxalate-derived porous prismatic nickel/nickel oxide nanocomposites toward lithium-ion battery. Journal of Colloid and Interface Science, 2020, 580, 614-622.	5.0	54
133	Controllable synthesis of a mesoporous NiO/Ni nanorod as an excellent catalyst for urea electro-oxidation. Inorganic Chemistry Frontiers, 2020, 7, 2089-2096.	3.0	54
134	Enhancing Ion Transport: Function of Ionic Liquid Decorated MOFs in Polymer Electrolytes for All-Solid-State Lithium Batteries. ACS Applied Energy Materials, 2020, 3, 4265-4274.	2.5	54
135	Recent progress of dimensionally designed electrode nanomaterials in aqueous electrochemical energy storage. Journal of Materials Chemistry A, 2021, 9, 9535-9572.	5.2	54
136	Biowaste-Derived Porous Carbon with Tuned Microstructure for High-Energy Quasi-Solid-State Supercapacitors. ACS Sustainable Chemistry and Engineering, 2019, 7, 13127-13135.	3.2	53
137	From Co-MOF to CoNi-MOF to Ni-MOF: A Facile Synthesis of 1D Micro-/Nanomaterials. Inorganic Chemistry, 2021, 60, 13168-13176.	1.9	53
138	Activated graphene with tailored pore structure parameters for long cycle-life lithium–sulfur batteries. Nano Research, 2017, 10, 4305-4317.	5.8	52
139	Specific-oxygen-supply functionalized core-shell nanoparticles for smart mutual-promotion between photodynamic therapy and gambogic acid-induced chemotherapy. Biomaterials, 2020, 257, 120228.	5.7	52
140	In situ establishment of Co/MoS ₂ heterostructures onto inverse opalâ€structured N,Sâ€doped carbon hollow nanospheres: Interfacial and architectural dual engineering for efficient hydrogen evolution reaction. SmartMat, 2021, 2, 591-602.	6.4	52
141	Strategies to improve electrochemical performances of pristine metalâ€organic frameworksâ€based electrodes for lithium/sodiumâ€ion batteries. SmartMat, 2021, 2, 488-518.	6.4	52
142	Synergy of CMC and modified chitosan on strength properties of cellulosic fiber network. Carbohydrate Polymers, 2010, 80, 208-214.	5.1	51
143	Recovery of lignocelluloses from pre-hydrolysis liquor in the lime kiln of kraft-based dissolving pulp production process by adsorption to lime mud. Bioresource Technology, 2011, 102, 10035-10039.	4.8	51
144	Synthesis and characterization of carboxymethylated xylan and its application as a dispersant. Carbohydrate Polymers, 2016, 146, 26-35.	5.1	51

#	Article	IF	CITATIONS
145	The Research Development of Quantum Dots in Electrochemical Energy Storage. Small, 2018, 14, e1801479.	5.2	50
146	Application of hemicelluloses precipitated via ethanol treatment of pre-hydrolysis liquor in high-yield pulp. Bioresource Technology, 2011, 102, 9613-9618.	4.8	49
147	Controllable synthesis of ultrathin layered transition metal hydroxide/zeolitic imidazolate framework-67 hybrid nanosheets for high-performance supercapacitors. Journal of Materials Chemistry A, 2021, 9, 11201-11209.	5.2	49
148	A High-Efficiency Electrocatalyst for Oxidizing Glucose: Ultrathin Nanosheet Co-Based Organic Framework Assemblies. ACS Sustainable Chemistry and Engineering, 2019, 7, 8986-8992.	3.2	48
149	Metal–organic frameworkâ€derived phosphide nanomaterials for electrochemical applications. , 2022, 4, 246-281.		48
150	Porous high specific surface area-activated carbon with co-doping N, S and P for high-performance supercapacitors. RSC Advances, 2017, 7, 43780-43788.	1.7	47
151	Hardwood Kraft Lignin-Based Hydrogels: Production and Performance. ACS Omega, 2018, 3, 8233-8242.	1.6	47
152	Advances in the application of manganese dioxide and its composites as electrocatalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 18492-18514.	5.2	47
153	MXenes nanocomposites for energy storage and conversion. Rare Metals, 2022, 41, 1101-1128.	3.6	47
154	Tall oil production from black liquor: Challenges and opportunities. Separation and Purification Technology, 2017, 175, 469-480.	3.9	45
155	One–dimensional metal–organic frameworks for electrochemical applications. Advances in Colloid and Interface Science, 2021, 298, 102562.	7.0	45
156	Interfacial Microenvironment Modulation Enhancing Catalytic Kinetics of Binary Metal Sulfides Heterostructures for Advanced Water Splitting Electrocatalysts. Small Methods, 2022, 6, e2101186.	4.6	45
157	Nickel Oxide/Graphene Composites: Synthesis and Applications. Chemistry - A European Journal, 2019, 25, 2141-2160.	1.7	44
158	Cationic kraft lignin-acrylamide copolymer as a flocculant for clay suspensions: (2) Charge density effect. Separation and Purification Technology, 2019, 210, 963-972.	3.9	44
159	NiO nanoparticles decorated hexagonal Nickel-based metal-organic framework: Self-template synthesis and its application in electrochemical energy storage. Journal of Colloid and Interface Science, 2021, 581, 709-718.	5.0	44
160	Canola straw chemimechanical pulping for pulp and paper production. Bioresource Technology, 2010, 101, 4193-4197.	4.8	43
161	Adsorption and dispersion performance of oxidized sulfomethylated kraft lignin in coal water slurry. Fuel Processing Technology, 2018, 176, 267-275.	3.7	43
162	Production of Flocculant from Thermomechanical Pulping Lignin via Nitric Acid Treatment. ACS Sustainable Chemistry and Engineering, 2016, 4, 1954-1962.	3.2	42

#	Article	IF	CITATIONS
163	Facile one-step synthesis of Ag@CeO ₂ core–shell nanospheres with efficient catalytic activity for the reduction of 4-nitrophenol. CrystEngComm, 2017, 19, 684-689.	1.3	42
164	Thermophilic membrane bioreactors: A review. Bioresource Technology, 2017, 243, 1180-1193.	4.8	42
165	Strong, ductile and biodegradable polylactic acid/lignin-containing cellulose nanofibril composites with improved thermal and barrier properties. Industrial Crops and Products, 2021, 171, 113898.	2.5	42
166	High-Performance Flexible In-Plane Micro-Supercapacitors Based on Vertically Aligned CuSe@Ni(OH) ₂ Hybrid Nanosheet Films. ACS Applied Materials & Interfaces, 2018, 10, 38341-38349.	4.0	41
167	Acidification of prehydrolysis liquor and spent liquor of neutral sulfite semichemical pulping process. Bioresource Technology, 2016, 218, 518-525.	4.8	40
168	Mango stone-derived activated carbon with high sulfur loading as a cathode material for lithium–sulfur batteries. RSC Advances, 2016, 6, 39918-39925.	1.7	39
169	Stability of kaolin dispersion in the presence of lignin-acrylamide polymer. Applied Clay Science, 2018, 158, 72-82.	2.6	39
170	PBA@POM Hybrids as Efficient Electrocatalysts for the Oxygen Evolution Reaction. Chemistry - an Asian Journal, 2019, 14, 2790-2795.	1.7	39
171	Sulfonation of Phenolated Kraft Lignin to Produce Water Soluble Products. Journal of Wood Chemistry and Technology, 2019, 39, 225-241.	0.9	38
172	Emerging Metal Single Atoms in Electrocatalysts and Batteries. Advanced Functional Materials, 2020, 30, 2003870.	7.8	38
173	Electrospunâ€Technologyâ€Derived Highâ€Performance Electrochemical Energy Storage Devices. Chemistry - an Asian Journal, 2016, 11, 2967-2995.	1.7	37
174	Porous dimanganese trioxide microflowers derived from microcoordinations for flexible solid-state asymmetric supercapacitors. Nanoscale, 2016, 8, 11689-11697.	2.8	36
175	Ultrathin cobalt pyrophosphate nanosheets with different thicknesses for Zn-air batteries. Journal of Colloid and Interface Science, 2020, 563, 328-335.	5.0	36
176	Vanadiumâ€Based Materials as Positive Electrode for Aqueous Zincâ€Ion Batteries. Advanced Sustainable Systems, 2020, 4, 2000178.	2.7	36
177	Highâ€Performance Capacitive Deionization and Killing Microorganism in Surfaceâ€Water by ZIFâ€9 Derived Carbon Composites. Small Methods, 2021, 5, e2101070.	4.6	36
178	Recent Progress in Prussian Blue/Prussian Blue Analogue-Derived Metallic Compounds. Bulletin of the Chemical Society of Japan, 2022, 95, 230-260.	2.0	36
179	Nickelâ€Based Materials for Advanced Rechargeable Batteries. Advanced Functional Materials, 2022, 32, .	7.8	36
180	Mesoporous hybrid NiO _x –MnO _x nanoprisms for flexible solid-state asymmetric supercapacitors. Dalton Transactions, 2016, 45, 10789-10797.	1.6	35

#	Article	IF	CITATIONS
181	Influence of pH and ionic strength on flocculation of clay suspensions with cationic xylan copolymer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 530, 20-32.	2.3	35
182	Phosphorus-based materials for high-performance rechargeable batteries. Inorganic Chemistry Frontiers, 2017, 4, 1424-1444.	3.0	35
183	Novel pathway to produce high molecular weight kraft lignin–acrylic acid polymers in acidic suspension systems. RSC Advances, 2018, 8, 12322-12336.	1.7	35
184	Performance of polyvinyl alcohol hydrogel reinforced with lignin-containing cellulose nanocrystals. Cellulose, 2020, 27, 8725-8743.	2.4	35
185	Alternate Integration of Vertically Oriented CuSe@FeOOH and CuSe@MnOOH Hybrid Nanosheets Frameworks for Flexible In-Plane Asymmetric Micro-supercapacitors. ACS Applied Energy Materials, 2020, 3, 3692-3703.	2.5	35
186	Porous phosphorus-rich CoP3/CoSnO2 hybrid nanocubes for high-performance Zn-air batteries. Science China Chemistry, 2020, 63, 475-482.	4.2	34
187	Recent advances in two-dimensional materials for alkali metal anodes. Journal of Materials Chemistry A, 2021, 9, 5232-5257.	5.2	34
188	Adsorption characteristics of cationic-modified poly (vinyl alcohol) on cellulose fibers–A qualitative analysis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 327, 127-133.	2.3	33
189	Hydroxypropyl sulfonated kraft lignin as a coagulant for cationic dye. Industrial Crops and Products, 2018, 124, 273-283.	2.5	33
190	Kraft Lignin–Tannic Acid as a Green Stabilizer for Oil/Water Emulsion. ACS Sustainable Chemistry and Engineering, 2019, 7, 2370-2379.	3.2	33
191	Calcination activation of three-dimensional cobalt organic phosphate nanoflake assemblies for supercapacitors. Inorganic Chemistry Frontiers, 2021, 8, 4222-4229.	3.0	33
192	Recent advancements in various steps of ethanol, butanol, and isobutanol productions from woody materials. Biotechnology Progress, 2013, 29, 297-310.	1.3	32
193	Cationic kraft lignin-acrylamide as a flocculant for clay suspensions: 1. Molecular weight effect. Separation and Purification Technology, 2018, 207, 213-221.	3.9	32
194	Pickering/Nonâ€Pickering Emulsions of Nanostructured Sulfonated Lignin Derivatives. ChemSusChem, 2020, 13, 4567-4578.	3.6	32
195	Framework materials for supercapacitors. Nanotechnology Reviews, 2022, 11, 1005-1046.	2.6	32
196	Adsorption of Lignocelluloses Dissolved in Prehydrolysis Liquor of Kraft-Based Dissolving Pulp Process on Oxidized Activated Carbons. Industrial & Engineering Chemistry Research, 2011, 50, 11706-11711.	1.8	31
197	Cationic xylan–METAC copolymer as a flocculant for clay suspensions. RSC Advances, 2016, 6, 40258-40269.	1.7	31
198	Evolving a flocculation process for isolating lignosulfonate from solution. Separation and Purification Technology, 2019, 222, 254-263.	3.9	31

#	Article	IF	CITATIONS
199	Optimizing the Poly Ethylene Oxide Flocculation Process for Isolating Lignin of Prehydrolysis Liquor of a Kraft-Based Dissolving Pulp Production Process. Industrial & Engineering Chemistry Research, 2012, 51, 5330-5335.	1.8	30
200	Cationic High Molecular Weight Lignin Polymer: A Flocculant for the Removal of Anionic Azo-Dyes from Simulated Wastewater. Molecules, 2018, 23, 2005.	1.7	30
201	Controlled synthesis of metal-organic frameworks coated with noble metal nanoparticles and conducting polymer for enhanced catalysis. Journal of Colloid and Interface Science, 2019, 537, 262-268.	5.0	30
202	Construction of SiO /nitrogen-doped carbon superstructures derived from rice husks for boosted lithium storage. Journal of Colloid and Interface Science, 2022, 606, 784-792.	5.0	30
203	Preparation ofÂN, P co-doped activated carbons derived from honeycomb as an electrode material for supercapacitors. RSC Advances, 2017, 7, 47448-47455.	1.7	29
204	Synthesis and characterization of lignin–poly(acrylamide)–poly(2â€methacryloyloxyethyl) trimethyl ammonium chloride copolymer. Journal of Applied Polymer Science, 2018, 135, 46338.	1.3	29
205	Ultrathin Nanosheet Assembled Sn _{0.91} Co _{0.19} S ₂ Nanocages with Exposed (100) Facets for Highâ€Performance Lithiumâ€Ion Batteries. Small, 2018, 14, 1702184.	5.2	29
206	Synthesis and Characterization of Carboxyethylated Lignosulfonate. ChemSusChem, 2018, 11, 2967-2980.	3.6	29
207	Ultrathin nanosheet-assembled accordion-like Ni-MOF for hydrazine hydrate amperometric sensing. Mikrochimica Acta, 2020, 187, 168.	2.5	29
208	Effect of cationic PVA characteristics on fiber and paper properties at saturation level of polymer adsorption. Carbohydrate Polymers, 2010, 79, 423-428.	5.1	28
209	A process for isolating lignin of pre-hydrolysis liquor of kraft pulping process based on surfactant and calcium oxide treatments. Biochemical Engineering Journal, 2012, 68, 19-24.	1.8	28
210	Designing anionic lignin based dispersant for kaolin suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538, 639-650.	2.3	28
211	Alteration in interfacial properties and stability of coal water slurry by lignosulfonate. Powder Technology, 2019, 356, 920-929.	2.1	28
212	Flocculation of kaolin particles with cationic lignin polymers. Scientific Reports, 2019, 9, 2672.	1.6	28
213	Microporous Carbon Nanofibers Derived from Poly(acrylonitrileâ€ <i>co</i> â€acrylic acid) for Highâ€Performance Supercapacitors. Chemistry - A European Journal, 2020, 26, 3326-3334.	1.7	28
214	Silicon oxide-protected nickel nanoparticles as biomass-derived catalysts for urea electro-oxidation. Journal of Colloid and Interface Science, 2021, 589, 56-64.	5.0	28
215	Simulation analysis of producing xylitol from hemicelluloses of pre-hydrolysis liquor. Chemical Engineering Research and Design, 2014, 92, 1563-1570.	2.7	27
216	Extraction of Technical Lignins from Pulping Spent Liquors, Challenges and Opportunities. Biofuels and Biorefineries, 2016, , 35-54.	0.5	27

#	Article	IF	CITATIONS
217	Dispersion of kaolin particles with carboxymethylated xylan. Applied Clay Science, 2017, 137, 183-191.	2.6	27
218	Hatted 1T/2Hâ€Phase MoS ₂ on Ni ₃ S ₂ Nanorods for Efficient Overall Water Splitting in Alkaline Media. Chemistry - A European Journal, 2020, 26, 2034-2040.	1.7	27
219	Lime Treatment of Prehydrolysis Liquor from the Kraft-Based Dissolving Pulp Production Process. Industrial & Engineering Chemistry Research, 2012, 51, 662-667.	1.8	26
220	Cationic xylan- (2-methacryloyloxyethyl trimethyl ammonium chloride) polymer as a flocculant for pulping wastewater. Carbohydrate Polymers, 2018, 186, 358-366.	5.1	26
221	One step synthesis of boron-doped carbon nitride derived from 4-pyridylboronic acid as biosensing platforms for assessment of food safety. Chemical Communications, 2019, 55, 9160-9163.	2.2	26
222	Sulfonation of Hydroxymethylated Lignin and Its Application. Journal of Bioresources and Bioproducts, 2019, 4, 80-88.	11.8	26
223	Characterization of four different lignins as a first step toward the identification of suitable endâ€use applications. Journal of Applied Polymer Science, 2015, 132, .	1.3	25
224	A glassy carbon electrode modified with ordered nanoporous Co3O4 for non-enzymatic sensing of glucose. Mikrochimica Acta, 2017, 184, 943-949.	2.5	25
225	Oxygen Vacancies Enhancing Electrocatalysis Performance of Porous Copper Oxide. Particle and Particle Systems Characterization, 2017, 34, 1600420.	1.2	25
226	Fly ash based adsorbent for treating bleaching effluent of kraft pulping process. Separation and Purification Technology, 2018, 195, 60-69.	3.9	25
227	Phenomenological Changes in Lignin Following Polymerization and Its Effects on Flocculating Clay Particles. Biomacromolecules, 2019, 20, 3940-3951.	2.6	25
228	Improving the adsorption of lignocelluloses of prehydrolysis liquor on precipitated calcium carbonate. Carbohydrate Polymers, 2013, 92, 2103-2110.	5.1	24
229	Adsorption of lignocelluloses of pre-hydrolysis liquor on calcium carbonate to induce functional filler. Carbohydrate Polymers, 2013, 94, 531-538.	5.1	24
230	One-step synthesis of CoSn(OH)6 nanocubes for high-performance all solid-state flexible supercapacitors. Rare Metals, 2017, 36, 457-464.	3.6	24
231	Development of Highâ€Voltage Aqueous Electrochemical Energy Storage Devices. Advanced Materials Interfaces, 2017, 4, 1700279.	1.9	24
232	A photo-responsive macroscopic switch constructed using a chiral azo-calix[4]arene functionalized silicon surface. Chemical Communications, 2018, 54, 2978-2981.	2.2	24
233	Phosphorylated kraft lignin with improved thermal stability. International Journal of Biological Macromolecules, 2020, 162, 1642-1652.	3.6	24
234	Metal–Organic Frameworkâ€Based Sulfur‣oaded Materials. Energy and Environmental Materials, 2022, 5, 215-230.	7.3	24

#	Article	IF	CITATIONS
235	The State of Research Regarding Ordered Mesoporous Materials in Batteries. Small, 2019, 15, e1804600.	5.2	23
236	Synthesis of Tostadasâ€Shaped Metalâ€Organic Frameworks for Remitting Capacity Fading of Liâ€Ion Batteries. Advanced Functional Materials, 2022, 32, .	7.8	23
237	Antimicrobial/Antimold Polymer-Grafted Starches for Recycled Cellulose Fibers. Journal of Biomaterials Science, Polymer Edition, 2010, 21, 1359-1370.	1.9	22
238	<scp>PDADMAC</scp> as a flocculant for lignosulfonate of <scp>NSSC</scp> pulping process. Biotechnology Progress, 2016, 32, 686-691.	1.3	22
239	Controllable synthesis and electrochemical capacitor performance of MOF-derived MnO _x /N-doped carbon/MnO ₂ composites. Inorganic Chemistry Frontiers, 2019, 6, 2873-2884.	3.0	22
240	Mesoporous NH4NiPO4·H2O for High-Performance Flexible All-Solid-State Asymmetric Supercapacitors. Frontiers in Chemistry, 2019, 7, 118.	1.8	22
241	Sustainable Chitosan-Dialdehyde Cellulose Nanocrystal Film. Materials, 2021, 14, 5851.	1.3	22
242	Surface and interface characteristics of hydrophobic lignin derivatives in solvents and films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 609, 125656.	2.3	21
243	Complex formation of modified chitosan and carboxymethyl cellulose and its effect on paper properties. Tappi Journal, 2009, 8, 29-35.	0.2	21
244	Synthesis of truncated octahedral zinc-doped manganese hexacyanoferrates and low-temperature calcination activation for lithium-ion battery. Journal of Colloid and Interface Science, 2022, 607, 1898-1907.	5.0	21
245	High strength and multifunctional polyurethane film incorporated with lignin nanoparticles. Industrial Crops and Products, 2022, 177, 114526.	2.5	21
246	Electrocatalysis of Rechargeable Non‣ithium Metal–Air Batteries. Advanced Materials Interfaces, 2017, 4, 1700589.	1.9	20
247	Fabrication of amphoteric lignin and its hydrophilicity/oleophilicity at oil/water interface. Journal of Colloid and Interface Science, 2020, 561, 231-243.	5.0	20
248	Modified Metalâ^'Organic Frameworks for Electrochemical Applications. Small Structures, 2022, 3, .	6.9	20
249	Directional Growth of Conductive Metal–Organic Framework Nanoarrays along [001] on Metal Hydroxides for Aqueous Asymmetric Supercapacitors. ACS Applied Materials & Interfaces, 2022, 14, 25878-25885.	4.0	20
250	Quantitative Analysis of Cationic Poly(vinyl alcohol) Diffusion into the Hairy Structure of Cellulose Fiber Pores: Charge Density Effect. Langmuir, 2011, 27, 13489-13496.	1.6	19
251	A combined adsorption and flocculation process for producing lignocellulosic complexes from spent liquors of neutral sulfite semichemical pulping process. Bioresource Technology, 2014, 159, 373-379.	4.8	19
252	Preparation and Application of Phosphorylated Xylan as a Flocculant for Cationic Ethyl Violet Dye. Polymers, 2018, 10, 317.	2.0	19

#	Article	IF	CITATIONS
253	Periodate oxidation of carbohydrate-enriched hydrolysis lignin and its application as coagulant for aluminum oxide suspension. Industrial Crops and Products, 2019, 130, 81-95.	2.5	19
254	Generation and Use of Lignin- <i>g</i> -AMPS in Extended DLVO Theory for Evaluating the Flocculation of Colloidal Particles. ACS Omega, 2020, 5, 21032-21041.	1.6	19
255	<i>In situ</i> immobilization of Fe/Fe ₃ C/Fe ₂ O ₃ hollow hetero-nanoparticles onto nitrogen-doped carbon nanotubes towards high-efficiency electrocatalytic oxygen reduction. Nanoscale, 2021, 13, 5400-5409.	2.8	19
256	Physicochemical impact of cellulose nanocrystal on oxidation of starch and starch based composite films. International Journal of Biological Macromolecules, 2021, 184, 42-49.	3.6	19
257	Lignin copolymers as corrosion inhibitor for carbon steel. Industrial Crops and Products, 2021, 168, 113585.	2.5	19
258	The influence of charge density and molecular weight of cationic poly (vinyl alcohol) on paper properties. Nordic Pulp and Paper Research Journal, 2008, 23, 285-291.	0.3	18
259	Removal of Acetic Acid from Spent Sulfite Liquor Using Anion Exchange Resin for Effective Xylose Fermentation with Pichia stipitis. BioResources, 2013, 8, .	0.5	18
260	Isolating lignin from spent liquor of thermomechanical pulping process via adsorption. Environmental Technology (United Kingdom), 2014, 35, 2597-2603.	1.2	18
261	Preparation of dialdehyde cellulose nanocrystal as an adsorbent for creatinine. Canadian Journal of Chemical Engineering, 2016, 94, 1435-1441.	0.9	18
262	Synthesis of Iron Phosphate and Their Composites for Lithium/Sodium Ion Batteries. Advanced Sustainable Systems, 2018, 2, 1700154.	2.7	18
263	Flow through autohydrolysis of spruce wood chips and lignin carbohydrate complex formation. Cellulose, 2018, 25, 1377-1393.	2.4	18
264	Interaction of poly(acrylic acid) and aluminum oxide particles in suspension: Particle size effect. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 556, 218-226.	2.3	18
265	Ultrathin Ni-MOF Nanobelts-Derived Composite for High Sensitive Detection of Nitrite. Frontiers in Chemistry, 2020, 8, 330.	1.8	18
266	Interfacial and Emulsion Characteristics of Oil–Water Systems in the Presence of Polymeric Lignin Surfactant. Langmuir, 2021, 37, 3346-3358.	1.6	18
267	A process for producing lignocellulosic flocs from NSSC spent liquor. Journal of Biotechnology, 2014, 173, 19-23.	1.9	17
268	Facile synthesis of Mn ₃ [Co(CN) ₆] ₂ ·nH ₂ O nanocrystals for high-performance electrochemical energy storage devices. Inorganic Chemistry Frontiers, 2017, 4, 442-449.	3.0	17
269	Structure and settling performance of aluminum oxide and poly(acrylic acid) flocs in suspension systems. Separation and Purification Technology, 2019, 215, 115-124.	3.9	17
270	A Hierarchically Porous ZIF@LDH Coreâ€Shell Structure for Highâ€Performance Supercapacitors. Chemistry - an Asian Journal, 2021, 16, 845-849.	1.7	17

#	Article	IF	CITATIONS
271	Concentration as a trigger to improve electrocatalytic activity of a Prussian blue analogue in glucose oxidation. CrystEngComm, 2019, 21, 5455-5460.	1.3	16
272	In Situ Generation of NiCoP Nanoparticles on a Bimetal–Organic Framework for High-Performance Supercapacitors. Inorganic Chemistry, 2022, 61, 10435-10441.	1.9	16
273	Integrated Forest Biorefinery â^' Sulfite Process. ACS Symposium Series, 2011, , 409-441.	0.5	15
274	A review on engineering of cellulosic cigarette paper to reduce carbon monoxide delivery of cigarettes. Carbohydrate Polymers, 2014, 101, 769-775.	5.1	15
275	Production of modified bentonite via adsorbing lignocelluloses from spent liquor of NSSC process. Bioresource Technology, 2014, 174, 152-158.	4.8	15
276	Flexible Supercapacitors: A Simple Approach to Boost Capacitance: Flexible Supercapacitors Based on Manganese Oxides@MOFs via Chemically Induced In Situ Selfâ€Transformation (Adv. Mater. 26/2016). Advanced Materials, 2016, 28, 5241-5241.	11.1	15
277	Ultrasonic-assisted ionic liquid treatment of chemithermomechanical pulp fibers. Cellulose, 2017, 24, 1483-1491.	2.4	15
278	Using Sulfobutylated and Sulfomethylated Lignin as Dispersant for Kaolin Suspension. Polymers, 2020, 12, 2046.	2.0	15
279	Interaction of hairy carboxyalkyl cellulose nanocrystals with cationic surfactant: Effect of carbon spacer. Carbohydrate Polymers, 2021, 255, 117396.	5.1	15
280	Nickel sulfide nanorods decorated on graphene as advanced hydrogen evolution electrocatalysts in acidic and alkaline media. Journal of Colloid and Interface Science, 2022, 608, 2633-2640.	5.0	15
281	Biological Effects of Gyrophoric Acid and Other Lichen Derived Metabolites, on Cell Proliferation, Apoptosis and Cell Signaling pathways. Chemico-Biological Interactions, 2022, 351, 109768.	1.7	15
282	A Review of Metal–Organic Frameworkâ€Based Compounds for Environmental Applications. Energy and Environmental Materials, 2023, 6, .	7.3	15
283	Integrated Forest Biorefinery – Prehydrolysis/Dissolving Pulping Process. ACS Symposium Series, 2011, , 475-506.	0.5	14
284	A process for producing lignin and volatile compounds from hydrolysis liquor. Biotechnology for Biofuels, 2017, 10, 47.	6.2	14
285	Highâ€Performance Flexible Solid‣tate Asymmetric Supercapacitors based on Ordered Mesoporous Cobalt Oxide. Energy Technology, 2017, 5, 544-548.	1.8	14
286	Our Contributions in Nanochemistry for Antibiosis, Electrocatalyst and Energy Storage Materials. Chemical Record, 2018, 18, 91-104.	2.9	14
287	Ligninâ€gâ€poly(acrylamide)â€gâ€poly(diallyldimethyl―ammonium chloride): Synthesis, Characterization and Applications. ChemistryOpen, 2018, 7, 645-658.	0.9	14
288	One-pot preparation of zwitterion-type lignin polymers. International Journal of Biological Macromolecules, 2019, 140, 429-440.	3.6	14

#	Article	IF	CITATIONS
289	CFD population balance modeling and dimensionless group analysis of a multiphase oscillatory baffled column (OBC) using moving overset meshes. Chemical Engineering Science, 2019, 199, 552-570.	1.9	14
290	Synthesis of Co _{0.5} Mn _{0.1} Ni _{0.4} C ₂ O ₄ â< <i>n</i> H <sub Micropolyhedrons: Multimetal Synergy for Highâ€Performance Glucose Oxidation Catalysis. Chemistry - an Asian Journal, 2019, 14, 2259-2265.</sub 	o>2	0 ₁₄
291	Acid hydrolysis of kraft lignin-acrylamide polymer to improve its flocculation affinity. Separation and Purification Technology, 2021, 258, 117964.	3.9	14
292	A Review on the Use of Lignocellulose-derived Chemicals in Wet-end Application of Papermaking. Current Organic Chemistry, 2013, 17, 1647-1654.	0.9	14
293	Interaction of cationic modified poly vinyl alcohol with high yield pulp. Cellulose, 2010, 17, 1021-1031.	2.4	13
294	Preparation and characterization of cationic poly vinyl alcohol with a low degree of substitution. European Polymer Journal, 2011, 47, 997-1004.	2.6	13
295	Separation of lignosulfonate from spent liquor of neutral sulphite semichemical pulping process via surfactant treatment. Separation and Purification Technology, 2015, 151, 39-46.	3.9	13
296	Process for Treating Spent Liquor of the TMP Process with Biomass-Based Fly Ash. Industrial & Engineering Chemistry Research, 2015, 54, 7301-7308.	1.8	13
297	Production of Sulfur Containing Kraft Lignin Products. BioResources, 2017, 13, .	0.5	13
298	Adsorption Characteristics of Carboxymethylated Lignin on Rigid and Soft Surfaces Probed by Quartz Crystal Microbalance. Langmuir, 2018, 34, 15293-15303.	1.6	13
299	Preparation and Coagulation Performance of Carboxypropylated and Carboxypentylated Lignosulfonates for Dye Removal. Biomolecules, 2019, 9, 383.	1.8	13
300	Synergistic effect of lignin incorporation into polystyrene for producing sustainable superadsorbent. RSC Advances, 2019, 9, 17639-17652.	1.7	13
301	Functional Lignin Nanoparticles with Tunable Size and Surface Properties: Fabrication, Characterization, and Use in Layer-by-Layer Assembly. ACS Applied Materials & Interfaces, 2021, 13, 26308-26317.	4.0	13
302	Pulping of Non-wood and Its Related Biorefinery Potential in Bangladesh: A Review. Current Organic Chemistry, 2013, 17, 1570-1576.	0.9	13
303	A coordination cage hosting ultrafine and highly catalytically active gold nanoparticles. Chemical Science, 2022, 13, 461-468.	3.7	13
304	Base-Free Synthesis and Photophysical Properties of New Schiff Bases Containing Indole Moiety. ACS Omega, 2022, 7, 10178-10186.	1.6	13
305	An integrated process for removing the inhibitors of the prehydrolysis liquor of kraftâ€based dissolving pulp process via cationic polymer treatment. Biotechnology Progress, 2012, 28, 998-1004.	1.3	12
306	Interaction of sulfomethylated lignin and aluminum oxide. Colloid and Polymer Science, 2018, 296, 1867-1878.	1.0	12

#	Article	IF	CITATIONS
307	Hierarchical Bimetallic Hydroxides Built by Porous Nanowireâ€Lapped Bundles with Ultrahigh Areal Capacity for Stable Hybrid Solidâ€State Supercapacitors. Advanced Materials Interfaces, 2019, 6, 1900959.	1.9	12
308	Regulation of the Ni2+ Content in a Hierarchical Urchin-Like MOF for High-Performance Electrocatalytic Oxygen Evolution. Frontiers in Chemistry, 2019, 7, 411.	1.8	12
309	Î ³ -MnOOH Nanowires Hydrothermally Reduced by Leaves for High-Efficiency Electrocatalysis of the Glucose Oxidation Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 8972-8978.	3.2	12
310	Carboxymethylated cellulose nanocrystals as clay suspension dispersants: effect of size and surface functional groups. Cellulose, 2020, 27, 3759-3772.	2.4	12
311	Rapid construction of highly-dispersed cobalt nanoclusters embedded in hollow cubic carbon walls as an effective polysulfide promoter in high-energy lithium-sulfur batteries. Nano Research, 2022, 15, 5105-5113.	5.8	12
312	Debonding Performance of Various Cationic Surfactants on Networks Made of Bleached Kraft Fibers. Industrial & Engineering Chemistry Research, 2010, 49, 11402-11407.	1.8	11
313	Separation of lignocelluloses from spent liquor of NSSC pulping process via adsorption. Journal of Environmental Management, 2014, 136, 62-67.	3.8	11
314	Thermal properties of lignocellulosic precipitates from neutral sulfite semichemical pulping process. Fuel Processing Technology, 2017, 158, 146-153.	3.7	11
315	Treating thermomechanical pulping wastewater with biomass-based fly ash: Modeling and experimental studies. Separation and Purification Technology, 2017, 183, 106-116.	3.9	11
316	Pretreatment and in Situ Fly Ash Systems for Improving the Performance of Sequencing Batch Reactor in Treating Thermomechanical Pulping Effluent. ACS Sustainable Chemistry and Engineering, 2017, 5, 6932-6939.	3.2	11
317	Impact of Counter Ions of Cationic Monomers on the Production and Characteristics of Chitosan-Based Hydrogel. ACS Omega, 2019, 4, 15087-15096.	1.6	11
318	Preparation of Hollow Core–Shell Fe3O4/Nitrogen-Doped Carbon Nanocomposites for Lithium-Ion Batteries. Molecules, 2022, 27, 396.	1.7	11
319	Recent progress and challenges in plasmonic nanomaterials. Nanotechnology Reviews, 2022, 11, 846-873.	2.6	11
320	Hierarchical Cobaltâ€Nickel Double Hydroxide Arrays Assembled on Naturally Sedimented Ti ₃ C ₂ T _x for Highâ€Performance Flexible Supercapacitors. Advanced Sustainable Systems, 2022, 6, .	2.7	11
321	Production of lignosulfonate in <scp>NSSC</scp> â€based biorefinery. Biotechnology Progress, 2015, 31, 1508-1514.	1.3	10
322	Flocculation of thermomechanical pulping spent liquor with polydiallyldimethylammonium chloride. Journal of Environmental Management, 2017, 200, 275-282.	3.8	10
323	Amorphous Cobalt Coordination Nanolayers Incorporated with Silver Nanowires: A New Electrode Material for Supercapacitors. Particle and Particle Systems Characterization, 2017, 34, 1600412.	1.2	10
324	Nickelâ€Based Sulfide Materials for Batteries. ChemistrySelect, 2018, 3, 12967-12986.	0.7	10

#	Article	IF	CITATIONS
325	Improvements on activated sludge settling and flocculation using biomass-based fly ash as activator. Scientific Reports, 2019, 9, 14590.	1.6	10
326	Self-assembly of kraft lignin-acrylamide polymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 572, 230-236.	2.3	10
327	An investigation on the stability of the hazelnut oil-water emulsion. Journal of Dispersion Science and Technology, 2020, 41, 929-940.	1.3	10
328	Interaction of synthetic and lignin-based sulfonated polymers with hydrophilic, hydrophobic, and charged self-assembled monolayers. RSC Advances, 2020, 10, 36778-36793.	1.7	10
329	Lignin-methyl methacrylate polymer as a hydrophobic multifunctional material. Industrial Crops and Products, 2020, 154, 112728.	2.5	10
330	Recent Developments in the Formulation and Use of Polymers and Particles of Plantâ€based Origin for Emulsion Stabilizations. ChemSusChem, 2021, 14, 4850-4877.	3.6	10
331	Fe incorporation-induced electronic modification of Co-tannic acid complex nanoflowers for high-performance water oxidation. Inorganic Chemistry Frontiers, 2022, 9, 1091-1099.	3.0	10
332	Cationic Hemicellulose As a Product of Dissolving Pulp Based Biorefinery. Industrial & Engineering Chemistry Research, 2015, 54, 1426-1432.	1.8	9
333	Deposition of Nanostructured Fluorineâ€Doped Hydroxyapatite Coating from Aqueous Dispersion by Suspension Plasma Spray. Journal of the American Ceramic Society, 2016, 99, 2899-2904.	1.9	9
334	A process for purifying xylosugars of pre-hydrolysis liquor from kraft-based dissolving pulp production process. Biotechnology for Biofuels, 2018, 11, 337.	6.2	9
335	Enhancement in biological treatment of pulping wastewater by fly ash. Chemosphere, 2018, 210, 1-9.	4.2	9
336	Sulfonated Lignin-g-Styrene Polymer: Production and Characterization. Polymers, 2018, 10, 928.	2.0	9
337	Ultrathin One-Dimensional Ni-MIL-77 Nanobelts for High-Performance Electrocatalytic Urea Evolution. Crystal Growth and Design, 2021, 21, 3639-3644.	1.4	9
338	Qualitative characterization of the diffusion of cationic-modified PVA into the cellulose fiber pores. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 348, 59-63.	2.3	8
339	Using cationic polyvinyl alcohol (C-PVA) to improve the strength of wood-free papers containing high-yield pulp (HYP). Holzforschung, 2010, 64, .	0.9	8
340	Preparation and application of sulfated xylan as a flocculant for dye solution. Biotechnology Progress, 2018, 34, 529-536.	1.3	8
341	Preparation and Application of Carboxymethylated Xylan as a Flocculant for Ethyl Violet Dye in Aqueous Systems. Journal of Wood Chemistry and Technology, 2018, 38, 324-337.	0.9	8
342	Solidâ€State Hybrid Supercapacitor Assembled from a Heterostructured Coâ^'Ni Batteryâ€like Cathode and Supercapacitorâ€Type Highly Disordered Carbon Nanosheets. ChemElectroChem, 2020, 7, 517-525.	1.7	8

#	Article	IF	CITATIONS
343	Production and Application of Triblock Hydrolysis Lignin-Based Anionic Copolymers in Aqueous Systems. ACS Omega, 2021, 6, 6393-6403.	1.6	8
344	Interaction of Carboxyalkylated Cellulose Nanocrystals and Antibiotics. ACS Applied Bio Materials, 2021, 4, 4165-4175.	2.3	8
345	Process development for tall oil lignin production. Bioresource Technology, 2021, 329, 124891.	4.8	8
346	Dual lignin-derived polymeric systems for hazardous ion removals. Journal of Hazardous Materials, 2021, 417, 125970.	6.5	8
347	Reactive template-engaged synthesis of Ni-doped Co ₃ S ₄ hollow and porous nanospheres with optimal electronic modulation toward high-efficiency electrochemical oxygen evolution. Inorganic Chemistry Frontiers, 2022, 9, 3924-3932.	3.0	8
348	Treatment of Fractionated Fibers with Various Cationic-Modified Poly(vinyl alcohols) and Its Impact on Paper Properties. Industrial & Engineering Chemistry Research, 2009, 48, 10485-10490.	1.8	7
349	Cationic Alkoxylated Amine Surfactant as a Debonding Agent for Papers Made of Sulfite-Bleached Fibers. Industrial & Engineering Chemistry Research, 2009, 48, 749-754.	1.8	7
350	Hydrothermal synthesis of γ-MnOOH nanowires using sapless leaves as the reductant: an effective catalyst for the regio-specific epoxidation of β-ionone. Sustainable Energy and Fuels, 2019, 3, 2572-2576.	2.5	7
351	Experimental and modeling analysis of lignin derived polymer in flocculating aluminium oxide particles. Separation and Purification Technology, 2020, 247, 116944.	3.9	7
352	A Honeycombâ€Like Bulk Superstructure of Carbon Nanosheets for Electrocatalysis and Energy Storage. Angewandte Chemie, 2020, 132, 19795-19800.	1.6	7
353	Thermo-induced nanocomposites with improved catalytic efficiency for oxygen evolution. Science China Materials, 2021, 64, 1556-1562.	3.5	7
354	Super functional anionic hydrolysis lignin for capturing dyes. Industrial Crops and Products, 2021, 162, 113243.	2.5	7
355	Correlation between physicochemical characteristics of lignin deposited on autohydrolyzed wood chips and their cellulase enzymatic hydrolysis. Bioresource Technology, 2022, 350, 126941.	4.8	7
356	Ultrasound-assisted carboxymethylation of LignoForce Kraft lignin to produce biodispersants. Journal of Cleaner Production, 2022, 366, 132776.	4.6	7
357	Production of Biofuels from Cellulose of Woody Biomass. , 0, , .		6
358	Generation of New Cationic Xylan-Based Polymer in Industrially Relevant Process. Industrial & Engineering Chemistry Research, 2018, 57, 12670-12682.	1.8	6
359	Oscillatory power number, power density model, and effect of restriction size for a movingâ€baffle oscillatory baffled column using CFD modelling. Canadian Journal of Chemical Engineering, 2020, 98, 1172-1190.	0.9	6
360	Reusable porous amphoteric lignin for water desalination. Journal of Environmental Chemical Engineering, 2021, 9, 105339.	3.3	6

#	Article	IF	CITATIONS
361	Ethanol Production via <i>In-Situ</i> Detoxification of Spent Sulfite Liquor. Journal of Bioprocess Engineering and Biorefinery, 2012, 1, 105-112.	0.2	6
362	Cationic Lignin Polymers as Flocculant for Municipal Wastewater. Polymers, 2021, 13, 3871.	2.0	6
363	Interfacial interactions of rough spherical surfaces with random topographies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 642, 128570.	2.3	6
364	A green composite hydrogel based on xylan and lignin with adjustable mechanical properties, high swelling, excellent <scp>UV</scp> shielding, and antioxidation properties. Journal of Applied Polymer Science, 2022, 139, .	1.3	6
365	Influence of Sodaâ ʿʾAirâ ʿʾAQ Pulping of Straw on Silica Precipitation, Paper Strength, and Performance of CPVA as a Dry Strength Additive. Industrial & Engineering Chemistry Research, 2009, 48, 10190-10195.	1.8	5
366	Complex Formation of PEO and Lignin in Prehydrolysis Liquor and its Enhancing Effect on Lignin Removal. BioResources, 2013, 8, .	0.5	5
367	Aluminum-based materials for advanced battery systems. Science China Materials, 2017, 60, 577-607.	3.5	5
368	Adsorption optimization of a biomassâ€based fly ash for treating thermomechanical pulping (TMP) pressate using definitive screening design (DSD). Canadian Journal of Chemical Engineering, 2018, 96, 1663-1673.	0.9	5
369	Synthesis of Ni ₄ Yb(OH) ₁₀ NO ₃ â< 3H ₂ O Nanoshe Electrode Materials in Electrochemical Energy Storage. ChemElectroChem, 2018, 5, 3150-3154.	ets for 1.7	5
370	High Acid Biochar-Based Solid Acid Catalyst from Corn Stalk for Lignin Hydrothermal Degradation. Polymers, 2020, 12, 1623.	2.0	5
371	Interaction Mechanism of Anionic Lignin and Cationic Soft Surface in Saline Systems. Journal of Physical Chemistry B, 2020, 124, 8678-8689.	1.2	5
372	A modeling approach for quantitative assessment of interfacial interaction between two rough particles in colloidal systems. Journal of Colloid and Interface Science, 2021, 587, 24-38.	5.0	5
373	Changes in the molecular structure of cellulose nanocrystals upon treatment with solvents. Cellulose, 2021, 28, 7007-7020.	2.4	5
374	Adsorption thermodynamics of cationic dye on hydrolysis lignin-acrylic acid adsorbent. Biomass Conversion and Biorefinery, 2023, 13, 7011-7026.	2.9	5
375	Chemical reactivity and sulfo-functionalization response of enzymatically produced lignin. Industrial Crops and Products, 2021, 172, 113950.	2.5	5
376	Hydrodynamic alignment and self-assembly of cationic lignin polymers made of architecturally altered monomers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629, 127437.	2.3	5
377	Preparation and Performance of Lignin-Based Multifunctional Superhydrophobic Coating. Molecules, 2022, 27, 1440.	1.7	5
378	Assembly of aluminum oxide particles with lignin-acrylic acid polymer in saline systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129322.	2.3	5

#	Article	IF	CITATIONS
379	Semitransparent films from low-substituted carboxymethylated cellulose fibers. Journal of Materials Science, 2022, 57, 10407-10424.	1.7	5
380	Developing performance-property correlation for fly ash as adsorbent for pulping effluents. Journal of Environmental Chemical Engineering, 2018, 6, 2502-2513.	3.3	4
381	Silverâ€doped carbon fibers at low loading capacity that display high antibacterial properties. Journal of Chemical Technology and Biotechnology, 2019, 94, 1628-1637.	1.6	4
382	Modification of Kraft Lignin with Dodecyl Glycidyl Ether. ChemistryOpen, 2019, 8, 1258-1266.	0.9	4
383	Preparation of Xylan–Acrylic Acid Polymer with High Molecular Weight and its Application as a Dye Removal Flocculant. Journal of Wood Chemistry and Technology, 2019, 39, 75-89.	0.9	4
384	Comparison of mixing performance between stationary-baffle and moving-baffle batch oscillatory baffled columns via numerical modeling. Chemical Engineering Communications, 2022, 209, 17-46.	1.5	4
385	In-Situ Rheological Studies of Cationic Lignin Polymerization in an Acidic Aqueous System. Polymers, 2020, 12, 2982.	2.0	4
386	Deposition behavior of lignin on solid surfaces assessed by stagnation point adsorption reflectometry. RSC Advances, 2021, 11, 16980-16988.	1.7	4
387	Flexible All-Solid-State Supercapacitor Fabricated with Nitrogen-Doped Carbon Nanofiber Electrode Material Derived from Polyacrylonitrile Copolymer. ACS Applied Energy Materials, 2021, 4, 5830-5839.	2.5	4
388	Mixing Time and Scaleâ€up Investigation of a Movingâ€Baffle Oscillatory Baffled Column. Chemical Engineering and Technology, 2021, 44, 1403-1411.	0.9	4
389	Two-Step Modification Pathway for Inducing Lignin-Derived Dispersants and Flocculants. Waste and Biomass Valorization, 2022, 13, 1077-1088.	1.8	4
390	Experimental and Theoretical Study of Ni ^{II} ―and Pd ^{II} â€Promoted Double Geminal C(sp ³)â^'H Bond Activation Providing Facile Access to NHC Pincer Complexes: Isolated Intermediates and Mechanism. Chemistry - A European Journal, 2022, 28, .	1.7	4
391	Editorial (Hot Topic: Recent Advancements in Biorefinery: From Biomass to Bioproduct and Biofuel). Current Organic Chemistry, 2013, 17, 1569-1569.	0.9	3
392	Polarity of Cationic Lignin Polymers: Physicochemical Behavior in Aqueous Solutions and Suspensions. ChemSusChem, 2020, 13, 4722-4734.	3.6	3
393	Imidazolium salts and [Pt(cod) ₂]: from NHC hydrido complexes to the unprecedented olefinic tetrahedral cluster [Pt ₄ (1¼-H)(cod) ₄]BF ₄ . Chemical Communications, 2021, 57, 10039-10042.	2.2	3
394	Oneâ€Step Template/Solventâ€Free Pyrolysis for In Situ Immobilization of CoP Nanoparticles onto N and P Coâ€Doped Carbon Porous Nanosheets towards Highâ€efficiency Electrocatalytic Hydrogen Evolution. Chemistry - A European Journal, 2021, 27, 9850-9857.	1.7	3
395	Infrared Polaritonic Biosensors Based on Two-Dimensional Materials. Molecules, 2021, 26, 4651.	1.7	3
396	Facile Fabrication of Cellulose Nanofibrils/Chitosan Beads as the Potential pH-Sensitive Drug Carriers. Polymers, 2022, 14, 2286.	2.0	3

#	Article	IF	CITATIONS
397	Direct preparation of hierarchical macroporous <i>β</i> -SiC using SiO ₂ opal as both template and precursor and its application in water splitting. Materials Technology, 2016, 31, 526-531.	1.5	2
398	Adsorption performance of creatinine on dialdehyde nanofibrillated cellulose derived from potato residues. Biotechnology Progress, 2016, 32, 208-214.	1.3	2
399	Energy Storage: Ultrathin Nickel–Cobalt Phosphate 2D Nanosheets for Electrochemical Energy Storage under Aqueous/Solid‣tate Electrolyte (Adv. Funct. Mater. 12/2017). Advanced Functional Materials, 2017, 27, .	7.8	2
400	Facile Synthesis of Zn/Nâ€doped CuO and Their Application in Oxygen Evolution Reaction. ChemistrySelect, 2018, 3, 12205-12209.	0.7	2
401	Chemical and thermal properties of precipitates made from hydrolysate of spruce wood chips. Wood Science and Technology, 2019, 53, 889-909.	1.4	2
402	Lignin production in plants and pilot and commercial processes. , 2021, , 551-587.		2
403	Present and future prospective of lignin-based materials in biomedical fields. , 2021, , 395-424.		2
404	Dispersion performance of hydroxypropyl sulfonated lignin in aluminum oxide suspension. Separation and Purification Technology, 2021, 276, 119247.	3.9	2
405	Impact of Physicochemical Properties of Biomass-based Fly Ash on Lignocellulose Removal from Pulping Spent Liquor. BioResources, 2018, 13, .	0.5	2
406	Influence of the Flexibility of Nickel PCPâ€Pincer Complexes on Câ^'H and Pâ^'C Bond Activation and Ethylene Reactivity: A Combined Experimental and Theoretical Investigation. Chemistry - A European Journal, 2022, 28, .	1.7	2
407	Interaction of rough ellipsoidal particles with random surface asperities in colloidal systems. Chemical Engineering Science, 2022, 260, 117869.	1.9	2
408	Simulating the impact of kraft pulping and bleaching parameters on Eucalyptus camaldulensis pulp properties using MATLAB. Canadian Journal of Chemical Engineering, 2010, 88, 455-461.	0.9	1
409	Thermal Degradation Behavior of Lignin-Based Complexes Derived from Pre-Hydrolysis Liquor of Kraft-Based Dissolving Pulp Process. Journal of Biobased Materials and Bioenergy, 2014, 8, 331-337.	0.1	1
410	Interaction of lignin and hemicelluloses in hydrolysate and with stainless steel surface. Wood Science and Technology, 0, , 1.	1.4	1
411	Impact of fly ash pretreatment on aerobic treatment of thermomechanical pulping spent liquor. Biotechnology Progress, 2018, 34, 370-378.	1.3	0
412	Frontispiece: Current Advances in Semiconductor Nanomaterialâ€Based Photoelectrochemical Biosensing. Chemistry - A European Journal, 2018, 24, .	1.7	0
413	Isolation of lignocelluloses from the spent liquor of thermomechanical pulping process with fly ash and cationic polymer. Journal of Environmental Management, 2019, 235, 414-422.	3.8	0
414	Isolation of Lignocelluloses via Acidification of Hydrolysates Induced from Different Straws. Waste and Biomass Valorization, 2020, 11, 4359-4367.	1.8	0

#	Article	IF	CITATIONS
415	Aggregation and Sedimentation Performance of Lignin and Hemicellulose Derived Flocs in the Spent Liquor of Thermomechanical Pulping Process. Waste and Biomass Valorization, 2021, 12, 773-786.	1.8	0
416	Generation of sulfonated kraft lignin acrylic acid polymer and its use as a flocculant. Separation Science and Technology, 2021, 56, 1601-1611.	1.3	0
417	Some MoS ₂ -Based Materials for Sodium-Ion Battery. , 2021, , 111-126.		0
418	Coagulation Efficiency of Biomass Fly Ash Leachate in Thermomechanical Pulping (TMP) Pressate. Waste and Biomass Valorization, 2021, 12, 4643.	1.8	0
419	Using Neutral Sulfite Semichemical Pulp to Adsorb Lignocelluloses from Prehydrolysis Liquor of the Kraft-based Dissolving Pulp Process. Current Organic Chemistry, 2013, 17, 1583-1588.	0.9	0