Enas A Hassan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4250755/publications.pdf Version: 2024-02-01

ENIAS & HASSAN

#	Article	IF	CITATIONS
1	Mechanical, barrier, and biodegradability properties of bagasse cellulose whiskers reinforced natural rubber nanocomposites. Industrial Crops and Products, 2010, 32, 627-633.	5.2	314
2	Development of wheat gluten/nanocellulose/titanium dioxide nanocomposites for active food packaging. Carbohydrate Polymers, 2015, 124, 337-346.	10.2	230
3	Nanofibers from bagasse and rice straw: process optimization and properties. Wood Science and Technology, 2012, 46, 193-205.	3.2	151
4	Chitosan nanoparticles/cellulose nanocrystals nanocomposites as a carrier system for the controlled release of repaglinide. International Journal of Biological Macromolecules, 2018, 111, 604-613.	7.5	93
5	Effect of pretreatment of bagasse fibers on the properties of chitosan/microfibrillated cellulose nanocomposites. Journal of Materials Science, 2011, 46, 1732-1740.	3.7	67
6	Use of ZnO nanoparticles for protecting oil paintings on paper support against dirt, fungal attack, and UV aging. Journal of Cultural Heritage, 2014, 15, 165-172.	3.3	67
7	Membranes Based on Cellulose Nanofibers and Activated Carbon for Removal of Escherichia coli Bacteria from Water. Polymers, 2017, 9, 335.	4.5	65
8	Enzyme-assisted isolation of microfibrillated cellulose from date palm fruit stalks. Industrial Crops and Products, 2014, 55, 102-108.	5.2	59
9	Effect of xylanase pretreatment of rice strawÂunbleached soda and neutral sulfite pulps on isolation of nanofibers and their properties. Cellulose, 2018, 25, 2939-2953.	4.9	47
10	Use of Bacterial Cellulose and Crosslinked Cellulose Nanofibers Membranes for Removal of Oil from Oil-in-Water Emulsions. Polymers, 2017, 9, 388.	4.5	43
11	Use of Cellulose and Oxidized Cellulose Nanocrystals from Olive Stones in Chitosan Bionanocomposites. Journal of Nanomaterials, 2015, 2015, 1-11.	2.7	42
12	Polycaprolactone/modified bagasse whisker nanocomposites with improved moistureâ€barrier and biodegradability properties. Journal of Applied Polymer Science, 2012, 125, E10.	2.6	35
13	Rice straw nanofibrillated cellulose films with antimicrobial properties via supramolecular route. Industrial Crops and Products, 2016, 93, 142-151.	5.2	34
14	Palm rachis microfibrillated cellulose and oxidized-microfibrillated cellulose for improving paper sheets properties of unbeaten softwood and bagasse pulps. Industrial Crops and Products, 2015, 64, 9-15.	5.2	31
15	Improving cellulose/polypropylene nanocomposites properties with chemical modified bagasse nanofibers and maleated polypropylene. Journal of Reinforced Plastics and Composites, 2014, 33, 26-36.	3.1	29
16	New supramolecular metallo-terpyridine carboxymethyl cellulose derivatives with antimicrobial properties. Carbohydrate Polymers, 2015, 116, 2-8.	10.2	29
17	Metallo-Terpyridine-Modified Cellulose Nanofiber Membranes for Papermaking Wastewater Purification. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 439-447.	3.7	18
18	Effect of pectin extraction method on properties of cellulose nanofibers isolated from sugar beet pulp. Cellulose, 2021, 28, 10905-10920.	4.9	13

ENAS A HASSAN

#	Article	IF	CITATIONS
19	Use of sugar beet cellulose nanofibers for paper coating. Industrial Crops and Products, 2022, 180, 114787.	5.2	12
20	New pectin derivatives with antimicrobial and emulsification properties via complexation with metal-terpyridines. Carbohydrate Polymers, 2021, 268, 118230.	10.2	11
21	Rice straw paper sheets reinforced with bleached or unbleached nanofibers. Nordic Pulp and Paper Research Journal, 2021, 36, 139-148.	0.7	2