
Peiran Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4250635/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Acoustic Microfluidics. Annual Review of Analytical Chemistry, 2020, 13, 17-43.	5.4	173
2	Wave number–spiral acoustic tweezers for dynamic and reconfigurable manipulation of particles and cells. Science Advances, 2019, 5, eaau6062.	10.3	146
3	Digital acoustofluidics enables contactless and programmable liquid handling. Nature Communications, 2018, 9, 2928.	12.8	134
4	Raman-Activated Cell Sorting Based on Dielectrophoretic Single-Cell Trap and Release. Analytical Chemistry, 2015, 87, 2282-2289.	6.5	126
5	Acoustofluidic centrifuge for nanoparticle enrichment and separation. Science Advances, 2021, 7, .	10.3	100
6	Standing Surface Acoustic Wave (SSAW)â€Based Fluorescenceâ€Activated Cell Sorter. Small, 2018, 14, e1801996.	10.0	83
7	A disposable acoustofluidic chip for nano/microparticle separation using unidirectional acoustic transducers. Lab on A Chip, 2020, 20, 1298-1308.	6.0	76
8	Surface acoustic waves enable rotational manipulation of <i>Caenorhabditis elegans</i> . Lab on A Chip, 2019, 19, 984-992.	6.0	69
9	Acoustofluidicsâ€Assisted Fluorescence‧ERS Bimodal Biosensors. Small, 2020, 16, e2005179.	10.0	68
10	Towards high-throughput microfluidic Raman-activated cell sorting. Analyst, The, 2015, 140, 6163-6174.	3.5	67
11	Acoustofluidic Holography for Micro- to Nanoscale Particle Manipulation. ACS Nano, 2020, 14, 14635-14645.	14.6	62
12	Generating multifunctional acoustic tweezers in Petri dishes for contactless, precise manipulation of bioparticles. Science Advances, 2020, 6, .	10.3	59
13	Acoustofluidics-Assisted Engineering of Multifunctional Three-Dimensional Zinc Oxide Nanoarrays. ACS Nano, 2020, 14, 6150-6163.	14.6	56
14	Acoustofluidic rotational tweezing enables high-speed contactless morphological phenotyping of zebrafish larvae. Nature Communications, 2021, 12, 1118.	12.8	49
15	Acoustic streaming vortices enable contactless, digital control of droplets. Science Advances, 2020, 6, eaba0606.	10.3	42
16	A Cell-Phone-Based Acoustofluidic Platform for Quantitative Point-of-Care Testing. ACS Nano, 2020, 14, 3159-3169.	14.6	36
17	Acoustohydrodynamic tweezers via spatial arrangement of streaming vortices. Science Advances, 2021, 7, .	10.3	34
18	Acoustofluidic multi-well plates for enrichment of micro/nano particles and cells. Lab on A Chip, 2020, 20, 3399-3409.	6.0	33

PEIRAN ZHANG

#	Article	IF	CITATIONS
19	Acoustofluidic devices controlled by cell phones. Lab on A Chip, 2018, 18, 433-441.	6.0	32
20	Acoustic tweezers based on circular, slanted-finger interdigital transducers for dynamic manipulation of micro-objects. Lab on A Chip, 2020, 20, 987-994.	6.0	32
21	Acoustic Cell Separation Based on Density and Mechanical Properties. Journal of Biomechanical Engineering, 2020, 142, .	1.3	31
22	Acoustofluidic multimodal diagnostic system for Alzheimer's disease. Biosensors and Bioelectronics, 2022, 196, 113730.	10.1	31
23	Contactless, programmable acoustofluidic manipulation of objects on water. Lab on A Chip, 2019, 19, 3397-3404.	6.0	30
24	Acoustofluidics for simultaneous nanoparticle-based drug loading and exosome encapsulation. Microsystems and Nanoengineering, 2022, 8, 45.	7.0	27
25	A sound approach to advancing healthcare systems: the future of biomedical acoustics. Nature Communications, 2022, 13, .	12.8	25
26	Acoustoelectronic nanotweezers enable dynamic and large-scale control of nanomaterials. Nature Communications, 2021, 12, 3844.	12.8	22
27	On-demand control of microfluidic flow via capillary-tuned solenoid microvalve suction. Lab on A Chip, 2014, 14, 4599-4603.	6.0	19
28	Acoustofluidic black holes for multifunctional in-droplet particle manipulation. Science Advances, 2022, 8, eabm2592.	10.3	17
29	Deterministic droplet coding <i>via</i> acoustofluidics. Lab on A Chip, 2020, 20, 4466-4473.	6.0	11
30	Hardware Design and Fault-Tolerant Synthesis for Digital Acoustofluidic Biochips. IEEE Transactions on Biomedical Circuits and Systems, 2020, 14, 1065-1078.	4.0	6
31	Floating Escherichia coli by expressing cyanobacterial gas vesicle genes. Journal of Ocean University of China, 2015, 14, 84-88.	1.2	3
32	Fluorescence-Activated Cell Sorters: Standing Surface Acoustic Wave (SSAW)-Based Fluorescence-Activated Cell Sorter (Small 40/2018). Small, 2018, 14, 1870185.	10.0	2
33	Hardware Design and Experimental Demonstrations for Digital Acoustofluidic Biochips. , 2019, , .		2
34	Structural Test and Functional Test for Digital Acoustofluidic Biochips. , 2019, , .		1
35	Single-Cell Biotechnology for Uncultured Microorganisms. Springer Protocols, 2015, , 119-131.	0.3	0
36	Inter-digital transducers activated acoustic streaming in viscous liquid. Journal of the Acoustical Society of America, 2018, 143, 1753-1753.	1.1	0