Michael Mingueneau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4250507/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Discovery and Preclinical Characterization of BIIB091, a Reversible, Selective BTK Inhibitor for the Treatment of Multiple Sclerosis. Journal of Medicinal Chemistry, 2022, 65, 1206-1224.	2.9	18
2	Optimization of a novel piperazinone series as potent selective peripheral covalent BTK inhibitors. Bioorganic and Medicinal Chemistry Letters, 2022, 60, 128549.	1.0	4
3	BTK inhibition limits B-cell–T-cell interaction through modulation of B-cell metabolism: implications for multiple sclerosis therapy. Acta Neuropathologica, 2022, 143, 505-521.	3.9	29
4	Preclinical Analysis of Candidate Anti-Human CD79 Therapeutic Antibodies Using a Humanized CD79 Mouse Model. Journal of Immunology, 2022, 208, 1566-1584.	0.4	8
5	Interleukinâ€7/Interferon Axis Drives T Cell and Salivary Gland Epithelial Cell Interactions in Sjögren's Syndrome. Arthritis and Rheumatology, 2021, 73, 631-640.	2.9	26
6	Isolation of Microglia and Analysis of Protein Expression by Flow Cytometry: Avoiding the Pitfall of Microglia Background Autofluorescence. Bio-protocol, 2021, 11, e4091.	0.2	1
7	Association between T follicular helper cells and T peripheral helper cells with B-cell biomarkers and disease activity in primary SjĶgren syndrome. RMD Open, 2021, 7, e001442.	1.8	12
8	Gene expression alterations in salivary gland epithelia of Sjögren's syndrome patients are associated with clinical and histopathological manifestations. Scientific Reports, 2021, 11, 11154.	1.6	9
9	MOG autoantibodies trigger a tightly-controlled FcR and BTK-driven microglia proliferative response. Brain, 2021, 144, 2361-2374.	3.7	29
10	Novel Potent Selective Orally Active S1P5 Receptor Antagonists. ACS Medicinal Chemistry Letters, 2021, 12, 351-355.	1.3	2
11	Nextâ€generation Bruton's tyrosine kinase inhibitor BIIB091 selectively and potently inhibits B cell and Fc receptor signaling and downstream functions in B cells and myeloid cells. Clinical and Translational Immunology, 2021, 10, e1295.	1.7	13
12	Cytometry by time of flight identifies distinct signatures in patients with systemic sclerosis, systemic lupus erythematosus and Sjögrens syndrome. European Journal of Immunology, 2020, 50, 119-129.	1.6	39
13	Salivary gland epithelial cells from patients with Sjögren's syndrome induce B-lymphocyte survival and activation. Annals of the Rheumatic Diseases, 2020, 79, 1468-1477.	0.5	62
14	Organotypic Brain Slice Culture Microglia Exhibit Molecular Similarity to Acutely-Isolated Adult Microglia and Provide a Platform to Study Neuroinflammation. Frontiers in Cellular Neuroscience, 2020, 14, 592005.	1.8	29
15	ImmGen at 15. Nature Immunology, 2020, 21, 700-703.	7.0	55
16	Differential accumulation of storage bodies with aging defines discrete subsets of microglia in the healthy brain. ELife, 2020, 9, .	2.8	49
17	AB0190â€CROSSTALK BETWEEN SALIVARY GLAND EPITHELIAL CELLS AND B LYMPHOCYTES IN PRIMARY SJÖGREN'S SYNDROME. , 2019, , .		0
18	S1PR5 is essential for human natural killer cell migration toward sphingosine-1 phosphate. Journal of Allergy and Clinical Immunology, 2018, 141, 2265-2268.e1.	1.5	39

Michael Mingueneau

#	Article	IF	CITATIONS
19	Role of the IL-12/IL-35 balance in patients with Sjögren syndrome. Journal of Allergy and Clinical Immunology, 2018, 142, 258-268.e5.	1.5	34
20	Clinical relevance of RORγ positive and negative subsets of CD161 ⁺ CD4 ⁺ T cells in primary Sjögren's syndrome. Rheumatology, 2017, 56, 303-312.	0.9	20
21	RNA-Seq and CyTOF immuno-profiling of regenerating lacrimal glands identifies a novel subset of cells expressing muscle-related proteins. PLoS ONE, 2017, 12, e0179385.	1.1	19
22	The Hippo pathway effector YAP is an essential regulator of ductal progenitor patterning in the mouse submandibular gland. ELife, 2017, 6, .	2.8	37
23	BAFF overexpression increases lymphocytic infiltration in SjĶgren's target tissue, but only inefficiently promotes ectopic B-cell differentiation. Clinical Immunology, 2016, 169, 69-79.	1.4	20
24	Cytometry by time-of-flight immunophenotyping identifies a blood Sjögren's signature correlating with disease activity and glandular inflammation. Journal of Allergy and Clinical Immunology, 2016, 137, 1809-1821.e12.	1.5	129
25	Identification of Novel CD4+ T Cell Subsets in the Target Tissue of Sjögren's Syndrome and Their Differential Regulation by the Lymphotoxin/LIGHT Signaling Axis. Journal of Immunology, 2016, 197, 3806-3819.	0.4	24
26	Hands-on experiments on glycemia regulation and type 1 diabetes. American Journal of Physiology - Advances in Physiology Education, 2015, 39, 232-239.	0.8	6
27	A multidisciplinary guided practical on type I diabetes engaging students in inquiry-based learning. American Journal of Physiology - Advances in Physiology Education, 2015, 39, 383-391.	0.8	0
28	Imbalanced signal transduction in regulatory T cells expressing the transcription factor FoxP3. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14942-14947.	3.3	52
29	Conditional density-based analysis of T cell signaling in single-cell data. Science, 2014, 346, 1250689.	6.0	188
30	Single-cell mass cytometry of TCR signaling: Amplification of small initial differences results in low ERK activation in NOD mice. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16466-16471.	3.3	50
31	Transcriptional insights into the CD8+ T cell response to infection and memory T cell formation. Nature Immunology, 2013, 14, 404-412.	7.0	303
32	Shared and distinct transcriptional programs underlie the hybrid nature of iNKT cells. Nature Immunology, 2013, 14, 90-99.	7.0	106
33	The transcriptional landscape of $\hat{I}\pm\hat{I}^2$ T cell differentiation. Nature Immunology, 2013, 14, 619-632.	7.0	256
34	Thymic negative selection is functional in NOD mice. Journal of Experimental Medicine, 2012, 209, 623-637.	4.2	43
35	Consortium biology in immunology: the perspective from the Immunological Genome Project. Nature Reviews Immunology, 2012, 12, 734-740.	10.6	37
36	Lymphoproliferative disorders involving T helper effector cells with defective LAT signalosomes. Seminars in Immunopathology, 2010, 32, 117-125.	2.8	7

Michael Mingueneau

#	Article	IF	CITATIONS
37	Tonic ubiquitylation controls T-cell receptor:CD3 complex expression during T-cell development. EMBO Journal, 2010, 29, 1285-1298.	3.5	40
38	LAT signaling pathology: an "autoimmune―condition without T cell self-reactivity. Trends in Immunology, 2010, 31, 253-259.	2.9	23
39	STAT6 Deletion Converts the Th2 Inflammatory Pathology Afflicting <i>Lat<i>Y136F</i> </i> Mice into a Lymphoproliferative Disorder Involving Th1 and CD8 Effector T Cells. Journal of Immunology, 2009, 182, 2680-2689.	0.4	19
40	Loss of the LAT Adaptor Converts Antigen-Responsive T Cells into Pathogenic Effectors that Function Independently of the T Cell Receptor. Immunity, 2009, 31, 197-208.	6.6	105
41	The proline-rich sequence of CD3ε controls T cell antigen receptor expression on and signaling potency in preselection CD4+CD8+ thymocytes. Nature Immunology, 2008, 9, 522-532.	7.0	91
42	Th2 Lymphoproliferative Disorder of <i>Lat Y136F</i> Mutant Mice Unfolds Independently of TCR-MHC Engagement and Is Insensitive to the Action of Foxp3+ Regulatory T Cells. Journal of Immunology, 2008, 180, 1565-1575.	0.4	165
43	Th2 Lymphoproliferative Disorders Resulting from Defective LAT Signalosomes. Novartis Foundation Symposium, 2007, 281, 93-102.	1.2	3
44	Multiplicity and plasticity of natural killer cell signaling pathways. Blood, 2006, 107, 2364-2372.	0.6	83