List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4250192/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biocompatible Chemically Fueled Transient Polymer Nanoparticles for Temporally Programmable in Vivo Imaging. CCS Chemistry, 2023, 5, 669-681.	4.6	4
2	Gold Nanoparticle Enantiomers and Their Chiral-Morphology Dependence of Cellular Uptake. CCS Chemistry, 2022, 4, 660-670.	4.6	39
3	Ethanol-derived white emissive carbon dots: the formation process investigation and multi-color/white LEDs preparation. Nano Research, 2022, 15, 942-949.	5.8	91
4	Engineering the synergistic effect of carbon dotsâ€stabilized atomic and subnanometric ruthenium as highly efficient electrocatalysts for robust hydrogen evolution. SmartMat, 2022, 3, 249-259.	6.4	38
5	Si-assisted N, P Co-doped room temperature phosphorescent carbonized polymer Dots: Information Encryption, graphic Anti-counterfeiting and biological imaging. Journal of Colloid and Interface Science, 2022, 609, 279-288.	5.0	35
6	Surface molecule induced effective light absorption and charge transfer for H2 production photocatalysis in a carbonized polymer dots-carbon nitride system. Applied Catalysis B: Environmental, 2022, 305, 121064.	10.8	14
7	Aggregation and luminescence in carbonized polymer dots. Aggregate, 2022, 3, e169.	5.2	77
8	Gold nanodots with stable red fluorescence for rapid dual-mode imaging of spinal cord and injury monitoring. Talanta, 2022, 241, 123241.	2.9	4
9	Oriented 2D Perovskite Wafers for Anisotropic Xâ€ray Detection through a Fast Tableting Strategy. Advanced Materials, 2022, 34, e2108020.	11.1	43
10	Carbon-Dot-Enhanced Electrocatalytic Hydrogen Evolution. Accounts of Materials Research, 2022, 3, 319-330.	5.9	72
11	Halogenâ€Doped Carbon Dots on Amorphous Cobalt Phosphide as Robust Electrocatalysts for Overall Water Splitting. Advanced Energy Materials, 2022, 12, .	10.2	108
12	Chemical Fuel Mediated Selfâ€Regulatory Polymer Brushes for Autonomous Fluorescence Modulator and Wettability Switcher. Macromolecular Rapid Communications, 2022, 43, e2100878.	2.0	4
13	Carbon Dots Embedded in Cellulose Film: Programmable, Performance-Tunable, and Large-Scale Subtle Fluorescent Patterning by <i>in Situ</i> Laser Writing. ACS Nano, 2022, 16, 2910-2920.	7.3	21
14	Instructive Hydrogels for Primary Tumor Cell Culture: Current Status and Outlook. Advanced Healthcare Materials, 2022, 11, e2102479.	3.9	7
15	Balloon Inspired Conductive Hydrogel Strain Sensor for Reducing Radiation Damage in Peritumoral Organs During Brachytherapy. Advanced Functional Materials, 2022, 32, .	7.8	65
16	Soft–Hard Segment Combined Carbonized Polymer Dots for Flexible Optical Film with Superhigh Surface Hardness. ACS Applied Materials & Interfaces, 2022, 14, 14504-14512.	4.0	9
17	Energy Transfer Assisted Fast Xâ€ray Detection in Direct/Indirect Hybrid Perovskite Wafer. Advanced Science, 2022, 9, e2103735.	5.6	20
18	Achieving blue water-dispersed room-temperature phosphorescence of carbonized polymer dots through nano-compositing with mesoporous silica. Chinese Chemical Letters, 2022, 33, 4213-4218.	4.8	15

#	Article	IF	CITATIONS
19	A Dualâ€Modal Magnetic Resonance/Photoacoustic Imaging Tracer for Longâ€Term Highâ€Precision Tracking and Facilitating Repair of Peripheral Nerve Injuries. Advanced Healthcare Materials, 2022, 11, e2200183.	3.9	5
20	Confined-domain crosslink-enhanced emission effect in carbonized polymer dots. Light: Science and Applications, 2022, 11, 56.	7.7	60
21	Organic Amine-Bridged Quasi-2D Perovskite/PbS Colloidal Quantum Dots Composites for High-Gain Near-Infrared Photodetectors. Nano Letters, 2022, 22, 2277-2284.	4.5	16
22	Construction of Intelligent Responsive Drug Delivery System and Multiâ€Mode Imaging Based on Gold Nanodots. Macromolecular Rapid Communications, 2022, 43, e2200034.	2.0	8
23	"On/Off―Switchable Sequential Light-Harvesting Systems Based on Controllable Protein Nanosheets for Regulation of Photocatalysis. ACS Nano, 2022, 16, 8012-8021.	7.3	23
24	Carbon Dots in Bioimaging, Biosensing and Therapeutics: A Comprehensive Review. Small Science, 2022, 2, .	5.8	117
25	Supramolecular Interactions of Flexible 2D Perovskite in Microstrain Releasing and Optoelectronic Properties Recovery. Advanced Functional Materials, 2022, 32, .	7.8	13
26	Surface Stabilization of Colloidal Perovskite Nanocrystals via Multi-amine Chelating Ligands. ACS Energy Letters, 2022, 7, 1963-1970.	8.8	34
27	Crossâ€ŀinking enhanced roomâ€ŧemperature phosphorescence of carbon dots. SmartMat, 2022, 3, 337-348.	6.4	42
28	Amine-Terminated Carbon Dots Linking Hole Transport Layer and Vertically Oriented Quasi-2D Perovskites through Hydrogen Bonds Enable Efficient LEDs. ACS Nano, 2022, 16, 9679-9690.	7.3	41
29	Electron–phonon coupling-assisted universal red luminescence of o-phenylenediamine-based carbon dots. Light: Science and Applications, 2022, 11, .	7.7	102
30	Photocatalytic upcycling of poly(ethylene terephthalate) plastic to high-value chemicals. Applied Catalysis B: Environmental, 2022, 316, 121662.	10.8	40
31	Solvent co-assembly in lead-free perovskite scintillators for stable and large-area X-ray imaging. Journal of Materials Chemistry A, 2022, 10, 15990-15998.	5.2	8
32	Phosphorus and Nitrogen Codoped Carbonized Polymer Dots with Multicolor Room Temperature Phosphorescence for Anticounterfeiting Painting. Langmuir, 2022, 38, 8304-8311.	1.6	10
33	Infliximab-based self-healing hydrogel composite scaffold enhances stem cell survival, engraftment, and function in rheumatoid arthritis treatment. Acta Biomaterialia, 2021, 121, 653-664.	4.1	29
34	Rational Design of Multiâ€Colorâ€Emissive Carbon Dots in a Single Reaction System by Hydrothermal. Advanced Science, 2021, 8, 2001453.	5.6	194
35	Accurate SERS monitoring of the plasmon mediated UV/visible/NIR photocatalytic and photothermal catalytic process involving Ag@carbon dots. Nanoscale, 2021, 13, 1006-1015.	2.8	20
36	Insights into photoluminescence mechanisms of carbon dots: advances and perspectives. Science Bulletin, 2021, 66, 839-856.	4.3	288

#	Article	IF	CITATIONS
37	Single Atom Rutheniumâ€Doped CoP/CDs Nanosheets via Splicing of Carbonâ€Dots for Robust Hydrogen Production. Angewandte Chemie - International Edition, 2021, 60, 7234-7244.	7.2	306
38	Polyhydroxy Ester Stabilized Perovskite for Low Noise and Large Linear Dynamic Range of Self-Powered Photodetectors. Nano Letters, 2021, 21, 1500-1507.	4.5	33
39	Zinc-Doped Carbon Dots as Effective Blue-Light-Activated Antibacterial Agent. Nano, 2021, 16, 2150031.	0.5	3
40	Single Atom Rutheniumâ€Doped CoP/CDs Nanosheets via Splicing of Carbonâ€Dots for Robust Hydrogen Production. Angewandte Chemie, 2021, 133, 7310-7320.	1.6	13
41	Au nanoring arrays with tunable morphological features and plasmonic resonances. Nano Research, 2021, 14, 4674-4679.	5.8	9
42	Ultrasmall Red Fluorescent Gold Nanoclusters for Highly Biocompatible and Longâ€Time Nerve Imaging. Particle and Particle Systems Characterization, 2021, 38, 2100001.	1.2	6
43	Rational Design of Multicolorâ€Emitting Chiral Carbonized Polymer Dots for Fullâ€Color and White Circularly Polarized Luminescence. Angewandte Chemie, 2021, 133, 14210-14218.	1.6	37
44	Rational Design of Multicolorâ€Emitting Chiral Carbonized Polymer Dots for Fullâ€Color and White Circularly Polarized Luminescence. Angewandte Chemie - International Edition, 2021, 60, 14091-14099.	7.2	168
45	Red-emitting, self-oxidizing carbon dots for the preparation of white LEDs with super-high color rendering index. Science China Chemistry, 2021, 64, 1547-1553.	4.2	103
46	Novel Diabetic Foot Wound Dressing Based on Multifunctional Hydrogels with Extensive Temperature-Tolerant, Durable, Adhesive, and Intrinsic Antibacterial Properties. ACS Applied Materials & Interfaces, 2021, 13, 26770-26781.	4.0	73
47	Precursor-dependent structural diversity in luminescent carbonized polymer dots (CPDs): the nomenclature. Light: Science and Applications, 2021, 10, 142.	7.7	104
48	Magnesium Oxideâ€Assisted Dualâ€Crossâ€Linking Bioâ€Multifunctional Hydrogels for Wound Repair during Fullâ€Thickness Skin Injuries. Advanced Functional Materials, 2021, 31, 2105718.	7.8	60
49	Biomimetic bioinks of nanofibrillar polymeric hydrogels for 3D bioprinting. Nano Today, 2021, 39, 101180.	6.2	9
50	Theoretical Understanding of Structure–Property Relationships in Luminescence of Carbon Dots. Journal of Physical Chemistry Letters, 2021, 12, 7671-7687.	2.1	111
51	Muscleâ€Inspired MXene Conductive Hydrogels with Anisotropy and Lowâ€Temperature Tolerance for Wearable Flexible Sensors and Arrays. Advanced Functional Materials, 2021, 31, 2105264.	7.8	171
52	Low ost and Largeâ€Area Hybrid Xâ€Ray Detectors Combining Direct Perovskite Semiconductor and Indirect Scintillator. Advanced Functional Materials, 2021, 31, 2107843.	7.8	25
53	Computational Studies on Carbon Dots Electrocatalysis: A Review. Advanced Functional Materials, 2021, 31, 2107196.	7.8	46
54	Solidâ€State Red Laser with a Single Longitudinal Mode from Carbon Dots. Angewandte Chemie, 2021, 133, 25718-25725.	1.6	9

#	Article	IF	CITATIONS
55	Solidâ€State Red Laser with a Single Longitudinal Mode from Carbon Dots. Angewandte Chemie - International Edition, 2021, 60, 25514-25521.	7.2	59
56	Hydrogel Composites with Different Dimensional Nanoparticles for Bone Regeneration. Macromolecular Rapid Communications, 2021, 42, e2100362.	2.0	14
57	3D/2D Perovskite Single Crystals Heterojunction for Suppressed Ions Migration in Hard Xâ€Ray Detection. Advanced Functional Materials, 2021, 31, 2104880.	7.8	47
58	Carbon dots as a new class of nanomedicines: Opportunities and challenges. Coordination Chemistry Reviews, 2021, 442, 214010.	9.5	158
59	Hollow mesoporous carbon nanocages with Fe isolated single atomic site derived from a MOF/polymer for highly efficient electrocatalytic oxygen reduction. Journal of Materials Chemistry A, 2021, 9, 22095-22101.	5.2	32
60	Deep-Blue Room-Temperature Phosphorescent Carbon Dots/Silica Microparticles from a Single Raw Material. Langmuir, 2021, 37, 13187-13193.	1.6	19
61	Mechanistic Study of Seed-Mediated Growth of Gold Rhombic Dodecahedra. Journal of Physical Chemistry C, 2021, 125, 27394-27402.	1.5	4
62	Nanocomposite hydrogels based on carbon dots and polymers. Chinese Chemical Letters, 2020, 31, 1443-1447.	4.8	50
63	Evaluation of the safety and protection efficacy of an attenuated genotype vii newcastle disease virus strain as a candidate vaccine. Microbial Pathogenesis, 2020, 139, 103831.	1.3	4
64	Aqueous-processed insulating polymer/nanocrystal solar cells with effective suppression of the leakage current and carrier recombination. Chinese Chemical Letters, 2020, 31, 1593-1597.	4.8	0
65	Spectroscopic studies of the optical properties of carbon dots: recent advances and future prospects. Materials Chemistry Frontiers, 2020, 4, 472-488.	3.2	79
66	Intracellular pH-propelled assembly of smart carbon nanodots and selective photothermal therapy for cancer cells. Colloids and Surfaces B: Biointerfaces, 2020, 188, 110724.	2.5	12
67	Carbon Dots–Implanted Graphitic Carbon Nitride Nanosheets for Photocatalysis: Simultaneously Manipulating Carrier Transport in Inter―and Intralayers. Solar Rrl, 2020, 4, 1900517.	3.1	35
68	Red fluorescent AuNDs with conjugation of cholera toxin subunit B (CTB) for extended-distance retro-nerve transporting and long-time neural tracing. Acta Biomaterialia, 2020, 102, 394-402.	4.1	19
69	In Situ Seed-Mediated Growth of Polymer-Grafted Gold Nanoparticles. Langmuir, 2020, 36, 789-795.	1.6	9
70	Ultrahigh‣ensitivity Sandwiched Plasmon Ruler for Labelâ€Free Clinical Diagnosis. Advanced Materials, 2020, 32, e1905927.	11.1	20
71	Transparent Conductive Supramolecular Hydrogels with Stimuliâ€Responsive Properties for Onâ€Demand Dissolvable Diabetic Foot Wound Dressings. Macromolecular Rapid Communications, 2020, 41, e2000441.	2.0	41
72	Recent advances in chiral carbonized polymer dots: From synthesis and properties to applications. Nano Today, 2020, 34, 100953.	6.2	95

#	Article	IF	CITATIONS
73	BiVO ₄ @Bi ₂ S ₃ Heterojunction Nanorods with Enhanced Charge Separation Efficiency for Multimodal Imaging and Synergy Therapy of Tumor. ACS Applied Bio Materials, 2020, 3, 5080-5092.	2.3	16
74	A Flexible Polymer Nanofiberâ€Cold Nanoparticle Composite Film for Solarâ€Thermal Seawater Desalination. Macromolecular Rapid Communications, 2020, 41, e2000390.	2.0	12
75	Self-Assembly of Au Nanoclusters into Helical Ribbons by Manipulating the Flexibility of Capping Ligands. Langmuir, 2020, 36, 14614-14622.	1.6	6
76	Carbonized Polymer Dots with Tunable Room-Temperature Phosphorescence Lifetime and Wavelength. ACS Applied Materials & Interfaces, 2020, 12, 38593-38601.	4.0	90
77	Highly efficient core–shell Ag@carbon dot modified TiO ₂ nanofibers for photocatalytic degradation of organic pollutants and their SERS monitoring. RSC Advances, 2020, 10, 26639-26645.	1.7	13
78	Enhanced charge separation and photocatalytic hydrogen evolution in carbonized-polymer-dot-coupled lead halide perovskites. Materials Horizons, 2020, 7, 2719-2725.	6.4	38
79	Magnetic targeting enhances the cutaneous wound healing effects of human mesenchymal stem cell-derived iron oxide exosomes. Journal of Nanobiotechnology, 2020, 18, 113.	4.2	78
80	Ascorbic Acid-PEI Carbon Dots with Osteogenic Effects as miR-2861 Carriers to Effectively Enhance Bone Regeneration. ACS Applied Materials & Interfaces, 2020, 12, 50287-50302.	4.0	40
81	Efficacy of Fe ₃ O ₄ @polydopamine nanoparticle-labeled human umbilical cord Wharton's jelly-derived mesenchymal stem cells in the treatment of streptozotocin-induced diabetes in rats. Biomaterials Science, 2020, 8, 5362-5375.	2.6	10
82	Sensitive and Stable 2D Perovskite Single rystal Xâ€ray Detectors Enabled by a Supramolecular Anchor. Advanced Materials, 2020, 32, e2003790.	11.1	159
83	Carbon Dots Induce Epithelialâ€Mesenchymal Transition for Promoting Cutaneous Wound Healing via Activation of TGFâ€Ĥ2/p38/Snail Pathway. Advanced Functional Materials, 2020, 30, 2004886.	7.8	19
84	Metal Halide Perovskite Nanocrystal Solar Cells: Progress and Challenges. Small Methods, 2020, 4, 2000419.	4.6	30
85	<p>Anti-Inflammatory Effects of Magnetically Targeted Mesenchymal Stem Cells on Laser-Induced Skin Injuries in Rats</p> . International Journal of Nanomedicine, 2020, Volume 15, 5645-5659.	3.3	10
86	Fluorescent Nanofibrillar Hydrogels of Carbon Dots and Cellulose Nanocrystals and Their Biocompatibility. ACS Sustainable Chemistry and Engineering, 2020, 8, 18492-18499.	3.2	28
87	Carbon Dots: A New Type of Carbon-Based Nanomaterial with Wide Applications. ACS Central Science, 2020, 6, 2179-2195.	5.3	793
88	<p>Magnetic Targeting of HU-MSCs in the Treatment of Glucocorticoid-Associated Osteonecrosis of the Femoral Head Through Akt/Bcl2/Bad/Caspase-3 Pathway</p> . International Journal of Nanomedicine, 2020, Volume 15, 3605-3620.	3.3	14
89	Injectable thermosensitive chitosan/gelatin-based hydrogel carried erythropoietin to effectively enhance maxillary sinus floor augmentation in vivo. Dental Materials, 2020, 36, e229-e240.	1.6	20
90	Bioinspired mineral hydrogels as nanocomposite scaffolds for the promotion of osteogenic marker expression and the induction of bone regeneration in osteoporosis. Acta Biomaterialia, 2020, 113, 614-626.	4.1	47

#	Article	IF	CITATIONS
91	Recent Advances in Energy Conversion Applications of Carbon Dots: From Optoelectronic Devices to Electrocatalysis. Small, 2020, 16, e2001295.	5.2	113
92	In Vivo Imaging: Multiplexed NIRâ€II Probes for Lymph Nodeâ€Invaded Cancer Detection and Imagingâ€Guided Surgery (Adv. Mater. 11/2020). Advanced Materials, 2020, 32, 2070086.	11.1	6
93	Surface Ligands Management for Efficient CsPbBrI ₂ Perovskite Nanocrystal Solar Cells. Solar Rrl, 2020, 4, 2000102.	3.1	25
94	Preparation of textured and transparent BiVO ₄ photoelectrodes based on Mo-doped BiVO ₄ nanoparticles for constructing a stand-alone tandem water splitting device. Chemical Communications, 2020, 56, 4156-4159.	2.2	18
95	Deep Red Emissive Carbonized Polymer Dots with Unprecedented Narrow Full Width at Half Maximum. Advanced Materials, 2020, 32, e1906641.	11.1	271
96	Advanced functional polymer materials. Materials Chemistry Frontiers, 2020, 4, 1803-1915.	3.2	117
97	Osteopromotive carbon dots promote bone regeneration through the PERK-eIF2α-ATF4 pathway. Biomaterials Science, 2020, 8, 2840-2852.	2.6	22
98	Synthesis of dual functional procaine-derived carbon dots for bioimaging and anticancer therapy. Nanomedicine, 2020, 15, 677-689.	1.7	17
99	Micro-/nanostructures meet anisotropic wetting: from preparation methods to applications. Materials Horizons, 2020, 7, 2566-2595.	6.4	58
100	Self-Enhanced Carbonized Polymer Dots for Selective Visualization of Lysosomes and Real-Time Apoptosis Monitoring. IScience, 2020, 23, 100982.	1.9	21
101	Underwater Superoleophobic Surface Based on Silica Hierarchical Cylinder Arrays with a Low Aspect Ratio. ACS Nano, 2020, 14, 9166-9175.	7.3	30
102	The preparation of hollow Fe3O4/Pd@C NCs to stabilize subminiature Pd nanoparticles for the reduction of 4-nitrophenol. New Journal of Chemistry, 2020, 44, 4869-4876.	1.4	7
103	Crosslinkâ€Enhanced Emission Effect on Luminescence in Polymers: Advances and Perspectives. Angewandte Chemie - International Edition, 2020, 59, 9826-9840.	7.2	169
104	Crosslinkâ€Enhanced Emission Effect on Luminescence in Polymers: Advances and Perspectives. Angewandte Chemie, 2020, 132, 9910-9924.	1.6	36
105	Ultrathin BiOX (X = Cl, Br, I) Nanosheets with Exposed {001} Facets for Photocatalysis. ACS Applied Nano Materials, 2020, 3, 1981-1991.	2.4	100
106	Energy Level Modification with Carbon Dot Interlayers Enables Efficient Perovskite Solar Cells and Quantum Dot Based Lightâ€Emitting Diodes. Advanced Functional Materials, 2020, 30, 1910530.	7.8	72
107	Synchronously integration of Co, Fe dual-metal doping in Ru@C and CDs for boosted water splitting performances in alkaline media. Applied Catalysis B: Environmental, 2020, 267, 118657.	10.8	82
108	Dual-emission hydrogel nanoparticles with linear and reversible luminescence-response to pH for intracellular fluorescent probes. Talanta, 2020, 211, 120755.	2.9	6

#	Article	IF	CITATIONS
109	Multiplexed NIRâ€II Probes for Lymph Nodeâ€Invaded Cancer Detection and Imagingâ€Guided Surgery. Advanced Materials, 2020, 32, e1907365.	11.1	163
110	Cesium–Lead Bromide Perovskite Nanoribbons with Two-Unit-Cell Thickness and Large Lateral Dimension for Deep-Blue Light Emission. ACS Applied Nano Materials, 2020, 3, 4826-4836.	2.4	8
111	Development of Halide Perovskite Single Crystal for Radiation Detection Applications. Frontiers in Chemistry, 2020, 8, 268.	1.8	25
112	Facile Strategy for Facet Competition Management to Improve the Performance of Perovskite Single-Crystal X-ray Detectors. Journal of Physical Chemistry Letters, 2020, 11, 3529-3535.	2.1	60
113	Current progress in carbon dots: synthesis, properties and applications. Materials Chemistry Frontiers, 2020, 4, 1287-1288.	3.2	13
114	A highly efficient overall water splitting ruthenium-cobalt alloy electrocatalyst across a wide pH range <i>via</i> electronic coupling with carbon dots. Journal of Materials Chemistry A, 2020, 8, 9638-9645.	5.2	88
115	High-sensitivity microliter blood pressure sensors based on patterned micro-nanostructure arrays. Lab on A Chip, 2020, 20, 1554-1561.	3.1	8
116	Hetero-atom-doped carbon dots: Doping strategies, properties and applications. Nano Today, 2020, 33, 100879.	6.2	318
117	Carbon quantum dots enhanced the activity for the hydrogen evolution reaction in ruthenium-based electrocatalysts. Materials Chemistry Frontiers, 2020, 4, 277-284.	3.2	95
118	Carbonized Polymer Dots: A Brand New Perspective to Recognize Luminescent Carbon-Based Nanomaterials. Journal of Physical Chemistry Letters, 2019, 10, 5182-5188.	2.1	197
119	Near-infrared emissive carbon dots with 33.96% emission in aqueous solution for cellular sensing and light-emitting diodes. Science Bulletin, 2019, 64, 1285-1292.	4.3	240
120	Tumor Microenvironment-Responsive Nanoshuttles with Sodium Citrate Modification for Hierarchical Targeting and Improved Tumor Theranostics. ACS Applied Materials & Interfaces, 2019, 11, 25730-25739.	4.0	29
121	Biomassâ€Đerived Carbon Dots and Their Applications. Energy and Environmental Materials, 2019, 2, 172-192.	7.3	295
122	Facile Synthesis of ZnO-Au Nanopetals and Their Application for Biomolecule Determinations. Chemical Research in Chinese Universities, 2019, 35, 924-928.	1.3	5
123	Managing Energy Loss in Inorganic Lead Halide Perovskites Solar Cells. Advanced Materials Interfaces, 2019, 6, 1901136.	1.9	19
124	Evolution and Synthesis of Carbon Dots: From Carbon Dots to Carbonized Polymer Dots. Advanced Science, 2019, 6, 1901316.	5.6	760
125	Iron oxide nanoparticles promote the migration of mesenchymal stem cells to injury sites. International Journal of Nanomedicine, 2019, Volume 14, 573-589.	3.3	54
126	Multidrug resistant tumors-aimed theranostics on the basis of strong electrostatic attraction between resistant cells and nanomaterials. Biomaterials Science, 2019, 7, 4990-5001.	2.6	9

#	Article	lF	CITATIONS
127	Pressure-controlled microfluidic sub-picoliter ultramicro-volume syringes based on integrated micro-nanostructure arrays. Lab on A Chip, 2019, 19, 3368-3374.	3.1	2
128	A brand-new generation of fluorescent nano-neural tracers: biotinylated dextran amine conjugated carbonized polymer dots. Biomaterials Science, 2019, 7, 1574-1583.	2.6	25
129	Deep-elliptical-silver-nanowell arrays (d-EAgNWAs) fabricated by stretchable imprinting combining colloidal lithography: A highly sensitive plasmonic sensing platform. Nano Research, 2019, 12, 845-853.	5.8	5
130	Targeting mitochondria with Au–Ag@Polydopamine nanoparticles for papillary thyroid cancer therapy. Biomaterials Science, 2019, 7, 1052-1063.	2.6	31
131	Hierarchical Hollow Nanocages Derived from Polymer/Cobalt Complexes for Electrochemical Overall Water Splitting. ACS Sustainable Chemistry and Engineering, 2019, 7, 10912-10919.	3.2	31
132	One-step preparation of silica microspheres with super-stable ultralong room temperature phosphorescence. Journal of Materials Chemistry C, 2019, 7, 8680-8687.	2.7	40
133	Surface-Oxidized Amorphous Fe Nanoparticles Supported on Reduced Graphene Oxide Sheets for Microwave Absorption. ACS Applied Nano Materials, 2019, 2, 4367-4376.	2.4	37
134	Kilogram-scale synthesis of carbon quantum dots for hydrogen evolution, sensing and bioimaging. Chinese Chemical Letters, 2019, 30, 2323-2327.	4.8	172
135	Oxygen-Defective Ultrathin BiVO ₄ Nanosheets for Enhanced Gas Sensing. ACS Applied Materials & amp; Interfaces, 2019, 11, 23495-23502.	4.0	81
136	Biomimetic Composite Scaffolds to Manipulate Stem Cells for Aiding Rheumatoid Arthritis Management. Advanced Functional Materials, 2019, 29, 1807860.	7.8	54
137	Pressure-triggered aggregation-induced emission enhancement in red emissive amorphous carbon dots. Nanoscale Horizons, 2019, 4, 1227-1231.	4.1	85
138	Skinâ€Inspired Antibacterial Conductive Hydrogels for Epidermal Sensors and Diabetic Foot Wound Dressings. Advanced Functional Materials, 2019, 29, 1901474.	7.8	371
139	Highly Efficient Aqueousâ€Processed Hybrid Solar Cells: Control Depletion Region and Improve Carrier Extraction. Advanced Energy Materials, 2019, 9, 1803849.	10.2	6
140	Highly ordered 3D-silver nanoring arrays (3D-AgNRAs) for refractometric sensing. Journal of Materials Chemistry C, 2019, 7, 7681-7691.	2.7	10
141	Controllable acidophilic dual-emission fluorescent carbonized polymer dots for selective imaging of bacteria. Nanoscale, 2019, 11, 9526-9532.	2.8	36
142	<i>In vivo</i> migration of Fe ₃ O ₄ @polydopamine nanoparticle-labeled mesenchymal stem cells to burn injury sites and their therapeutic effects in a rat model. Biomaterials Science, 2019, 7, 2861-2872.	2.6	34
143	Morphological and Interfacial Engineering of Cobalt-Based Electrocatalysts by Carbon Dots for Enhanced Water Splitting. ACS Sustainable Chemistry and Engineering, 2019, 7, 7047-7057.	3.2	65
144	Ionicâ€State Cobalt and Iron Coâ€doped Carbon Dots with Superior Electrocatalytic Activity for the Oxygen Evolution Reaction. ChemElectroChem, 2019, 6, 2088-2094.	1.7	26

#	Article	IF	CITATIONS
145	Cobalt-Ruthenium Nanoalloys Parceled in Porous Nitrogen-Doped Graphene as Highly Efficient Difunctional Catalysts for Hydrogen Evolution Reaction and Hydrolysis of Ammonia Borane. ACS Sustainable Chemistry and Engineering, 2019, 7, 7014-7023.	3.2	95
146	White Photoluminescent Ti ₃ C ₂ MXene Quantum Dots with Twoâ€Photon Fluorescence. Advanced Science, 2019, 6, 1801470.	5.6	143
147	Unpacking the toolbox of two-dimensional nanostructures derived from nanosphere templates. Materials Horizons, 2019, 6, 1380-1408.	6.4	16
148	Engineering the Photoluminescence of CsPbX ₃ (X = Cl, Br, and I) Perovskite Nanocrystals Across the Full Visible Spectra with the Interval of 1 nm. ACS Applied Materials & Interfaces, 2019, 11, 14256-14265.	4.0	66
149	NF-κB inhibition promotes apoptosis in androgen-independent prostate cancer cells by the photothermal effect <i>via</i> the lκBα/AR signaling pathway. Biomaterials Science, 2019, 7, 2559-2570.	2.6	15
150	Ordered Hybrid Micro/Nanostructures and Their Optical Applications. Advanced Optical Materials, 2019, 7, 1800980.	3.6	22
151	Fluorescent probe gold nanodots to quick detect Cr(VI) via oxidoreduction quenching process. Science China Chemistry, 2019, 62, 133-141.	4.2	7
152	Zn2+-Doped Carbon Dots, a Good Biocompatibility Nanomaterial Applied for Bio-Imaging and Inducing Osteoblastic Differentiation <i>in vitro</i> . Nano, 2019, 14, 1950029.	0.5	12
153	Insights into supramolecular-interaction-regulated piezochromic carbonized polymer dots. Nanoscale, 2019, 11, 5072-5079.	2.8	29
154	Carbonized polymer dots/TiO ₂ photonic crystal heterostructures with enhanced light harvesting and charge separation for efficient and stable photocatalysis. Materials Chemistry Frontiers, 2019, 3, 2659-2667.	3.2	16
155	Osteogenic potential of Zn ²⁺ -passivated carbon dots for bone regeneration <i>in vivo</i> . Biomaterials Science, 2019, 7, 5414-5423.	2.6	46
156	Bone formation promoted by bone morphogenetic protein-2 plasmid-loaded porous silica nanoparticles with the involvement of autophagy. Nanoscale, 2019, 11, 21953-21963.	2.8	15
157	An injectable and thermosensitive hydrogel: Promoting periodontal regeneration by controlled-release of aspirin and erythropoietin. Acta Biomaterialia, 2019, 86, 235-246.	4.1	170
158	Facile Synthesis of Mg ²⁺ â€Doped Carbon Dots as Novel Biomaterial Inducing Cell Osteoblastic Differentiation. Particle and Particle Systems Characterization, 2019, 36, 1800315.	1.2	30
159	Graphitic Nitrogen and Highâ€Crystalline Triggered Strong Photoluminescence and Roomâ€Temperature Ferromagnetism in Carbonized Polymer Dots. Advanced Science, 2019, 6, 1801192.	5.6	98
160	Hydroxyl decorated g-C3N4 nanoparticles with narrowed bandgap for high efficient photocatalyst design. Applied Catalysis B: Environmental, 2019, 244, 262-271.	10.8	109
161	Polydopamine-coated Au-Ag nanoparticle-guided photothermal colorectal cancer therapy through multiple cell death pathways. Acta Biomaterialia, 2019, 83, 414-424.	4.1	68
162	Inorganic CsPbI ₂ Br Perovskite Solar Cells: The Progress and Perspective. Solar Rrl, 2019, 3, 1800239.	3.1	217

#	Article	IF	CITATIONS
163	Graded Protein/PEG Nanopattern Arrays: Well-Defined Gradient Biomaterials to Induce Basic Cellular Behaviors. ACS Applied Materials & Interfaces, 2019, 11, 1595-1603.	4.0	12
164	Visualized Detection of Polyelectrolytes via 1D Photonic Crystals. Advanced Materials Interfaces, 2019, 6, 1801433.	1.9	5
165	Codelivery of doxorubicin and MDR1-siRNA by mesoporous silica nanoparticles-polymerpolyethylenimine to improve oral squamous carcinoma treatment. International Journal of Nanomedicine, 2018, Volume 13, 187-198.	3.3	49
166	Colloidal lithography-based fabrication of highly-ordered nanofluidic channels with an ultra-high surface-to-volume ratio. Lab on A Chip, 2018, 18, 979-988.	3.1	8
167	One‣tep Hydrothermal Synthesis of Nitrogenâ€Doped Conjugated Carbonized Polymer Dots with 31% Efficient Red Emission for In Vivo Imaging. Small, 2018, 14, e1703919.	5.2	317
168	A detour strategy for colloidally stable block-copolymer grafted MAPbBr ₃ quantum dots in water with long photoluminescence lifetime. Nanoscale, 2018, 10, 5820-5826.	2.8	45
169	Fluorescence Manipulation of Carbon Dots by 1D Photonic Crystals. Advanced Optical Materials, 2018, 6, 1701262.	3.6	10
170	A combined experimental and theoretical investigation of donor and acceptor interface in efficient aqueous-processed polymer/nanocrystal hybrid solar cells. Science China Chemistry, 2018, 61, 437-443.	4.2	7
171	Cathode and Anode Interlayers Based on Polymer Carbon Dots via Work Function Regulation for Efficient Polymer Solar Cells. Advanced Materials Interfaces, 2018, 5, 1701519.	1.9	20
172	Design of Metalâ€Free Polymer Carbon Dots: A New Class of Roomâ€Temperature Phosphorescent Materials. Angewandte Chemie, 2018, 130, 2417-2422.	1.6	55
173	Design of Metalâ€Free Polymer Carbon Dots: A New Class of Roomâ€Temperature Phosphorescent Materials. Angewandte Chemie - International Edition, 2018, 57, 2393-2398.	7.2	429
174	Polymerâ€Passivated Inorganic Cesium Lead Mixedâ€Halide Perovskites for Stable and Efficient Solar Cells with High Openâ€Circuit Voltage over 1.3 V. Advanced Materials, 2018, 30, 1705393.	11.1	401
175	Berberine-based carbon dots for selective and safe cancer theranostics. RSC Advances, 2018, 8, 1168-1173.	1.7	29
176	Dynamically crosslinked carbon dots/biopolymer hydrogels exhibiting fluorescence and multi-stimuli logic-gate responses. Polymer Chemistry, 2018, 9, 2478-2483.	1.9	22
177	Recent progress on the photocatalysis of carbon dots: Classification, mechanism and applications. Nano Today, 2018, 19, 201-218.	6.2	536
178	Polycation-functionalized gold nanodots with tunable near-infrared fluorescence for simultaneous gene delivery and cell imaging. Nano Research, 2018, 11, 2392-2404.	5.8	30
179	Integrated obstacle microstructures for gas-liquid separation and flow switching in microfluidic networks. Sensors and Actuators B: Chemical, 2018, 256, 735-743.	4.0	10
180	Supramolecular Cross-Link-Regulated Emission and Related Applications in Polymer Carbon Dots. ACS Applied Materials & Interfaces, 2018, 10, 12262-12277.	4.0	110

#	Article	IF	CITATIONS
181	Aqueousâ€Processed Polymer/Nanocrystal Hybrid Solar Cells with Doubleâ€Side Bulk Heterojunction. Advanced Energy Materials, 2018, 8, 1701966.	10.2	17
182	Color-Tunable Carbon Dots Possessing Solid-State Emission for Full-Color Light-Emitting Diodes Applications. ACS Photonics, 2018, 5, 502-510.	3.2	206
183	Ultrathin stimuli-responsive polymer film-based optical sensor for fast and visual detection of hazardous organic solvents. Journal of Materials Chemistry C, 2018, 6, 10861-10869.	2.7	11
184	Detection of Various Biomarkers and Enzymes via a Nanocluster-Based Fluorescence Turn-on Sensing Platform. Analytical Chemistry, 2018, 90, 14578-14585.	3.2	23
185	Small molecules modified biomimetic gelatin/hydroxyapatite nanofibers constructing an ideal osteogenic microenvironment with significantly enhanced cranial bone formation. International Journal of Nanomedicine, 2018, Volume 13, 7167-7181.	3.3	37
186	Facile Synthesis of Cu–In–S/ZnS Core/Shell Quantum Dots in 1-Dodecanethiol for Efficient Light-Emitting Diodes with an External Quantum Efficiency of 7.8%. Chemistry of Materials, 2018, 30, 8939-8947.	3.2	70
187	Chloride treatment for highly efficient aqueous-processed CdTe nanocrystal-based hybrid solar cells. Journal of Materials Chemistry C, 2018, 6, 11156-11161.	2.7	2
188	Manipulating Depletion Region of Aqueousâ€Processed Nanocrystals Solar Cells with Widened Fermi Level Offset. Small, 2018, 14, e1803072.	5.2	3
189	Synthesis of ginsenoside Re-based carbon dots applied for bioimaging and effective inhibition of cancer cells. International Journal of Nanomedicine, 2018, Volume 13, 6249-6264.	3.3	51
190	Hollow Polypyrrole Nanospindles for Highly Effective Cancer Therapy. ChemPlusChem, 2018, 83, 1127-1134.	1.3	11
191	Hollow Pd Nanospheres Conjugated with Ce6 To Simultaneously Realize Photodynamic and Photothermal Therapy. ACS Applied Bio Materials, 2018, 1, 1102-1108.	2.3	16
192	Smart Anisotropic Wetting Surfaces with Reversed pHâ€Responsive Wetting Directions. Advanced Functional Materials, 2018, 28, 1802001.	7.8	37
193	Tumor Theranostics of Transition Metal Ions Loaded Polyaminopyrrole Nanoparticles. Nanotheranostics, 2018, 2, 211-221.	2.7	2
194	Chemical Synthesis of High-Stable Amorphous FeCo Nanoalloys with Good Magnetic Properties. Nanomaterials, 2018, 8, 154.	1.9	26
195	Noninvasive Brain Tumor Imaging Using Red Emissive Carbonized Polymer Dots across the Blood–Brain Barrier. ACS Omega, 2018, 3, 7888-7896.	1.6	27
196	A Novel Strategy to Synthesize Dual Blue Fluorescentâ€Magnetic EuCl ₂ Nanocrystals via Oneâ€Pot Method with Controlled Morphologies Using Urea. Particle and Particle Systems Characterization, 2018, 35, 1800106.	1.2	3
197	Synergistic Reducing Effect for Synthesis of Well-Defined Au Nanooctopods With Ultra-Narrow Plasmon Band Width and High Photothermal Conversion Efficiency. Frontiers in Chemistry, 2018, 6, 335.	1.8	9
198	Colloidal Synthesis of Ultrathin Monoclinic BiVO ₄ Nanosheets for Z-Scheme Overall Water Splitting under Visible Light. ACS Catalysis, 2018, 8, 8649-8658.	5.5	151

#	Article	IF	CITATIONS
199	Magnetic delivery of Fe ₃ O ₄ @polydopamine nanoparticle-loaded natural killer cells suggest a promising anticancer treatment. Biomaterials Science, 2018, 6, 2714-2725.	2.6	86
200	Hydrothermal Addition Polymerization for Ultrahigh‥ield Carbonized Polymer Dots with Room Temperature Phosphorescence via Nanocomposite. Chemistry - A European Journal, 2018, 24, 11303-11308.	1.7	117
201	Photothermal-Activatable Fe ₃ O ₄ Superparticle Nanodrug Carriers with PD-L1 Immune Checkpoint Blockade for Anti-metastatic Cancer Immunotherapy. ACS Applied Materials & Interfaces, 2018, 10, 20342-20355.	4.0	112
202	Reversible "Off–On―Fluorescence of Zn ²⁺ -Passivated Carbon Dots: Mechanism and Potential for the Detection of EDTA and Zn ²⁺ . Langmuir, 2018, 34, 7767-7775.	1.6	69
203	Carbonâ€Quantumâ€Dotsâ€Loaded Ruthenium Nanoparticles as an Efficient Electrocatalyst for Hydrogen Production in Alkaline Media. Advanced Materials, 2018, 30, e1800676.	11.1	406
204	New Strategies for the Prevention and Treatment of Bone Loss - From Mechanical Loading Point of View. Current Pharmaceutical Design, 2018, 23, 6264-6271.	0.9	1
205	Surfactant-Free Preparation of Au@Resveratrol Hollow Nanoparticles with Photothermal Performance and Antioxidant Activity. ACS Applied Materials & Interfaces, 2017, 9, 3376-3387.	4.0	35
206	Thermal-Responsive Anisotropic Wetting Microstructures for Manipulation of Fluids in Microfluidics. Langmuir, 2017, 33, 494-502.	1.6	17
207	Aqueous-Processed Polymer/Nanocrystal Hybrid Solar Cells with Efficiency of 5.64%: The Impact of Device Structure, Polymer Content, and Film Thickness. Journal of Physical Chemistry C, 2017, 121, 2025-2034.	1.5	13
208	CsPb _{<i>x</i>} Mn _{1–<i>x</i>} Cl ₃ Perovskite Quantum Dots with High Mn Substitution Ratio. ACS Nano, 2017, 11, 2239-2247.	7.3	496
209	Constructing Postâ€Permeation Method to Fabricate Polymer/Nanocrystals Hybrid Solar Cells with PCE Exceeding 6%. Small, 2017, 13, 1603771.	5.2	16
210	Preparation of quantum dots-montmorillonite nanocomposites with strong photoluminescence for light-emitting diodes. RSC Advances, 2017, 7, 7774-7779.	1.7	3
211	Unidirectional Wetting of Liquids on "Janus―Nanostructure Arrays under Various Media. Langmuir, 2017, 33, 2177-2184.	1.6	8
212	Employing CdSe _{<i>x</i>} Te _{1–<i>x</i>} Alloyed Quantum Dots to Avoid the Temperature-Dependent Emission Shift of Light-Emitting Diodes. Journal of Physical Chemistry C, 2017, 121, 5313-5323.	1.5	21
213	A new type of polymer carbon dots with high quantum yield: From synthesis to investigation on fluorescence mechanism. Polymer, 2017, 116, 472-478.	1.8	116
214	Facile synthesis of silver nanoparticles/carbon dots for a charge transfer study and peroxidase-like catalytic monitoring by surface-enhanced Raman scattering. Applied Surface Science, 2017, 410, 42-50.	3.1	34
215	Design and synthesis of dodecahedral carbon nanocages incorporated with Fe ₃ O ₄ . RSC Advances, 2017, 7, 13257-13262.	1.7	10
216	Recent development and understanding of polymer–nanocrystal hybrid solar cells. Materials Chemistry Frontiers, 2017, 1, 1502-1513.	3.2	23

#	Article	IF	CITATIONS
217	Phosphine-Free Synthesis of Metal Chalcogenide Quantum Dots by Directly Dissolving Chalcogen Dioxides in Alkylthiol as the Precursor. ACS Applied Materials & Interfaces, 2017, 9, 9840-9848.	4.0	20
218	Nearâ€Infrared Photoluminescent Polymer–Carbon Nanodots with Twoâ€Photon Fluorescence. Advanced Materials, 2017, 29, 1603443.	11.1	645
219	Graded nanowell arrays: a fine plasmonic "library―with an adjustable spectral range. Nanoscale, 2017, 9, 6724-6733.	2.8	13
220	Anisotropic Wetting of Water on Patterned Asymmetric Nanostructure Arrays. Advanced Materials Interfaces, 2017, 4, 1700034.	1.9	16
221	One-step hydrothermal synthesis of photoluminescent carbon nanodots with selective antibacterial activity against Porphyromonas gingivalis. Nanoscale, 2017, 9, 7135-7142.	2.8	201
222	High performance polymer carbon dots for detection of chromium (VI) ions in water. AIP Conference Proceedings, 2017, , .	0.3	5
223	Polymer-assisted fabrication of gold nanoring arrays. Nano Research, 2017, 10, 3346-3357.	5.8	15
224	Carbon dots for tracking and promoting the osteogenic differentiation of mesenchymal stem cells. Biomaterials Science, 2017, 5, 1820-1827.	2.6	97
225	Cu ²⁺ -Loaded Polydopamine Nanoparticles for Magnetic Resonance Imaging-Guided pH- and Near-Infrared-Light-Stimulated Thermochemotherapy. ACS Applied Materials & Interfaces, 2017, 9, 19706-19716.	4.0	103
226	Hybrid Solar Cells from Aqueous Polymers and Colloidal Nanocrystals. Chinese Journal of Chemistry, 2017, 35, 551-561.	2.6	10
227	Piezochromic Carbon Dots with Twoâ€photon Fluorescence. Angewandte Chemie, 2017, 129, 6283-6287.	1.6	64
228	Piezochromic Carbon Dots with Twoâ€photon Fluorescence. Angewandte Chemie - International Edition, 2017, 56, 6187-6191.	7.2	223
229	Facile fabrication of homogeneous and gradient plasmonic arrays with tunable optical properties via thermally regulated surface charge density. Journal of Materials Chemistry C, 2017, 5, 3962-3972.	2.7	10
230	Au nanorods-sensitized 1DPC for visible detection of NIR light. Journal of Materials Chemistry C, 2017, 5, 2942-2950.	2.7	3
231	Contribution of Metal Defects in the Assembly Induced Emission of Cu Nanoclusters. Journal of the American Chemical Society, 2017, 139, 4318-4321.	6.6	152
232	Highly sensitive deep-silver-nanowell arrays (d-AgNWAs) for refractometric sensing. Nano Research, 2017, 10, 908-921.	5.8	8
233	Photoluminescence mechanism in graphene quantum dots: Quantum confinement effect and surface/edge state. Nano Today, 2017, 13, 10-14.	6.2	387
234	Aqueousâ€Processed Polymer/Nanocrystals Hybrid Solar Cells: The Effects of Chlorine on the Synthesis of CdTe Nanocrystals, Crystal Growth, Defect Passivation, Photocarrier Dynamics, and Device Performance. Solar Rrl, 2017, 1, 1600020.	3.1	24

#	Article	IF	CITATIONS
235	Single-unit-cell thick Co ₉ S ₈ nanosheets from preassembled Co ₁₄ nanoclusters. Chemical Communications, 2017, 53, 416-419.	2.2	7
236	The polymeric characteristics and photoluminescence mechanism in polymer carbon dots: A review. Materials Today Chemistry, 2017, 6, 13-25.	1.7	188
237	Fullâ€Color Emission Polymer Carbon Dots with Quenchâ€Resistant Solidâ€State Fluorescence. Advanced Science, 2017, 4, 1700395.	5.6	196
238	Rationally designed particle-in-aperture hybrid arrays as large-scale, highly reproducible SERS substrates. Journal of Materials Chemistry C, 2017, 5, 11631-11639.	2.7	4
239	A novel dual-emission QDs/PCDs assembled composite nanoparticle for high sensitive visual detection of Hg ²⁺ . RSC Advances, 2017, 7, 49330-49336.	1.7	5
240	Engineering a red emission of copper nanocluster self-assembly architectures by employing aromatic thiols as capping ligands. Nanoscale, 2017, 9, 12618-12627.	2.8	87
241	Seed-mediated phase-selective growth of Cu ₂ GeS ₃ hollow nanoparticles with huge cavities. CrystEngComm, 2017, 19, 6736-6743.	1.3	5
242	High-Efficiency Aqueous-Processed Polymer/CdTe Nanocrystals Planar Heterojunction Solar Cells with Optimized Band Alignment and Reduced Interfacial Charge Recombination. ACS Applied Materials & Interfaces, 2017, 9, 31345-31351.	4.0	29
243	Chelation Competition Induced Polymerization (CCIP): A Binding Energy Based Strategy for Nonspherical Polymer Nanocontainers' Fabrication. Chemistry of Materials, 2017, 29, 6536-6543.	3.2	25
244	Engineering the Self-Assembly Induced Emission of Cu Nanoclusters by Au(I) Doping. ACS Applied Materials & Interfaces, 2017, 9, 24899-24907.	4.0	69
245	Cu(II)-Doped Polydopamine-Coated Gold Nanorods for Tumor Theranostics. ACS Applied Materials & Interfaces, 2017, 9, 44293-44306.	4.0	45
246	One-Step Preparation of Cesium Lead Halide CsPbX ₃ (X = Cl, Br, and I) Perovskite Nanocrystals by Microwave Irradiation. ACS Applied Materials & Interfaces, 2017, 9, 42919-42927.	4.0	117
247	Analogous self-assembly and crystallization: a chloride-directed orientated self-assembly of Cu nanoclusters and subsequent growth of Cu _{2â^'x} S nanocrystals. Nanoscale, 2017, 9, 10335-10343.	2.8	6
248	Autonomous Control of Fluids in a Wide Surface Tension Range in Microfluidics. Langmuir, 2017, 33, 7248-7255.	1.6	6
249	Polymer carbon dots—a highlight reviewing their unique structure, bright emission and probable photoluminescence mechanism. Journal of Polymer Science Part A, 2017, 55, 610-615.	2.5	82
250	Ordered Micro/Nanostructures with Geometric Gradient: From Integrated Wettability "Library―to Anisotropic Wetting Surface. Small, 2017, 13, 1601807.	5.2	38
251	Patterned surfaces for biological applications: A new platform using two dimensional structures as biomaterials. Chinese Chemical Letters, 2017, 28, 675-690.	4.8	28
252	Electrostatic attraction driven and shuttle-like morphology assisted enhancement for tumor uptake. RSC Advances, 2017, 7, 56621-56628.	1.7	4

#	Article	IF	CITATIONS
253	3D porous ZnO–SnS p–n heterojunction for visible light driven photocatalysis. Physical Chemistry Chemical Physics, 2017, 19, 16576-16585.	1.3	86
254	Copper inter-nanoclusters distance-modulated chromism of self-assembly induced emission. Nanoscale, 2017, 9, 18845-18854.	2.8	29
255	Improvement in Open-Circuit Voltage of Thin Film Solar Cells from Aqueous Nanocrystals by Interface Engineering. ACS Applied Materials & Interfaces, 2016, 8, 900-907.	4.0	35
256	Facile Synthesis of Cu ₂ GeS ₃ and Cu ₂ MGeS ₄ (M = Zn,) Tj ET Materials, 2016, 28, 9139-9149.	Qq0 0 0 rg 3.2	gBT /Overlocl 22
257	pH- and Temperature-Sensitive Hydrogel Nanoparticles with Dual Photoluminescence for Bioprobes. ACS Nano, 2016, 10, 5856-5863.	7.3	195
258	Fluorescent non-conjugated polymer dots for targeted cell imaging. Nanoscale, 2016, 8, 9837-9841.	2.8	67
259	Morphology-Patterned Anisotropic Wetting Surface for Fluid Control and Gas–Liquid Separation in Microfluidics. ACS Applied Materials & Interfaces, 2016, 8, 13094-13103.	4.0	37
260	Precisely Controllable Core–Shell Ag@Carbon Dots Nanoparticles: Application to in Situ Super-Sensitive Monitoring of Catalytic Reactions. ACS Applied Materials & Interfaces, 2016, 8, 27956-27965.	4.0	98
261	Functional interface based on silicon artificial chamfer nanocylinder arrays (CNCAs) with underwater superoleophobicity and anisotropic properties. Nano Research, 2016, 9, 3141-3151.	5.8	13
262	Multifunctional Reversible Fluorescent Controller Based on a One-Dimensional Photonic Crystal. ACS Applied Materials & Interfaces, 2016, 8, 28844-28852.	4.0	14
263	Cu(II) doped polyaniline nanoshuttles for multimodal tumor diagnosis and therapy. Biomaterials, 2016, 104, 213-222.	5.7	48
264	Fe ₃ O ₄ @polydopamine Composite Theranostic Superparticles Employing Preassembled Fe ₃ O ₄ Nanoparticles as the Core. ACS Applied Materials & Interfaces, 2016, 8, 22942-22952.	4.0	135
265	Highly efficient aqueous-processed polymer/nanocrystal hybrid solar cells with an aqueous-processed TiO ₂ electron extraction layer. Journal of Materials Chemistry A, 2016, 4, 11738-11746.	5.2	26
266	An effective poly(p-phenylenevinylene) polymer adhesion route toward three-dimensional nitrogen-doped carbon nanotube/reduced graphene oxide composite for direct electrocatalytic oxygen reduction. Nano Research, 2016, 9, 3364-3376.	5.8	19
267	Chelation competition induced polymerization (CCIP): construction of integrated hollow polydopamine nanocontainers with tailorable functionalities. Chemical Communications, 2016, 52, 10155-10158.	2.2	36
268	Superconductivity in dense carbon-based materials. Physical Review B, 2016, 93, .	1.1	37
269	Fluorescence-Magnetism Functional EuS Nanocrystals with Controllable Morphologies for Dual Bioimaging. ACS Applied Materials & Interfaces, 2016, 8, 33539-33545.	4.0	13
270	Aspirin-Based Carbon Dots, a Good Biocompatibility of Material Applied for Bioimaging and Anti-Inflammation. ACS Applied Materials & Interfaces, 2016, 8, 32706-32716.	4.0	140

#	Article	IF	CITATIONS
271	Structure evolution of Prussian blue analogues to CoFe@C core–shell nanocomposites with good microwave absorbing performances. RSC Advances, 2016, 6, 105644-105652.	1.7	81
272	Colloidal cholesteric liquid crystal in spherical confinement. Nature Communications, 2016, 7, 12520.	5.8	157
273	Tuning the bandgap of graphene quantum dots by gold nanoparticle-assisted O2 plasma etching. RSC Advances, 2016, 6, 97853-97860.	1.7	4
274	The effects of a series of carbon dots on fibrillation and cytotoxicity of human islet amyloid polypeptide. Journal of Materials Chemistry B, 2016, 4, 4913-4921.	2.9	42
275	Unravelling the working junction of aqueous-processed polymer–nanocrystal solar cells towards improved performance. Physical Chemistry Chemical Physics, 2016, 18, 15791-15797.	1.3	15
276	pH-Dependent Synthesis of Novel Structure-Controllable Polymer-Carbon NanoDots with High Acidophilic Luminescence and Super Carbon Dots Assembly for White Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2016, 8, 4062-4068.	4.0	106
277	Facile construction of carbon dots via acid catalytic hydrothermal method and their application for target imaging of cancer cells. Nano Research, 2016, 9, 214-223.	5.8	51
278	Structural Formation and Improved Performances of Chemically Synthesized Composition-Controlled Micron-Sized Fe100â^'x Co x Particles. Journal of Superconductivity and Novel Magnetism, 2016, 29, 417-422.	0.8	5
279	High efficiency aqueous-processed MEH-PPV/CdTe hybrid solar cells with a PCE of 4.20%. Journal of Materials Chemistry A, 2016, 4, 1105-1111.	5.2	24
280	Aqueous-Processed Insulating Polymer/Nanocrystal Hybrid Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 7101-7110.	4.0	23
281	Seedless synthesis of gold nanorods using resveratrol as a reductant. Nanotechnology, 2016, 27, 165601.	1.3	21
282	Effective delivery of bone morphogenetic protein 2 gene using chitosan–polyethylenimine nanoparticle to promote bone formation. RSC Advances, 2016, 6, 34081-34089.	1.7	18
283	Polypyrrole-coated flower-like Pd nanoparticles (Pd NPs@PPy) with enhanced stability and heat conversion efficiency for cancer photothermal therapy. RSC Advances, 2016, 6, 15854-15860.	1.7	24
284	One-dimensional photonic crystals: fabrication, responsiveness and emerging applications in 3D construction. RSC Advances, 2016, 6, 4505-4520.	1.7	110
285	Electrophoretic deposition of fluorescent Cu and Au sheets for light-emitting diodes. Nanoscale, 2016, 8, 395-402.	2.8	21
286	Beyond bottom-up carbon nanodots: Citric-acid derived organic molecules. Nano Today, 2016, 11, 128-132.	6.2	229
287	Nonâ€Conjugated Polymer Dots with Crosslinkâ€Enhanced Emission in the Absence of Fluorophore Units. Angewandte Chemie - International Edition, 2015, 54, 14626-14637.	7.2	360
288	From 1D to 3D: a new route to fabricate tridimensional structures via photo-generation of silver networks. RSC Advances, 2015, 5, 28633-28642.	1.7	7

#	Article	IF	CITATIONS
289	Hydroquinone-Assisted Synthesis of Branched Au–Ag Nanoparticles with Polydopamine Coating as Highly Efficient Photothermal Agents. ACS Applied Materials & Interfaces, 2015, 7, 11613-11623.	4.0	95
290	Self-Assembly of Nanoclusters into Mono-, Few-, and Multilayered Sheets <i>via</i> Dipole-Induced Asymmetric van der Waals Attraction. ACS Nano, 2015, 9, 6315-6323.	7.3	98
291	Prediction of novel crystal structures and superconductivity of compressed HBr. RSC Advances, 2015, 5, 45812-45816.	1.7	6
292	Investigation from chemical structure to photoluminescent mechanism: a type of carbon dots from the pyrolysis of citric acid and an amine. Journal of Materials Chemistry C, 2015, 3, 5976-5984.	2.7	599
293	Heterostructures: Au-Edged CuZnSe2Heterostructured Nanosheets with Enhanced Electrochemical Performance (Small 29/2015). Small, 2015, 11, 3582-3582.	5.2	0
294	Thermal responsive fluorescent nanocomposites based on carbon dots. RSC Advances, 2015, 5, 15187-15193.	1.7	22
295	Janus Si Micropillar Arrays with Thermal-Responsive Anisotropic Wettability for Manipulation of Microfluid Motions. ACS Applied Materials & Interfaces, 2015, 7, 376-382.	4.0	46
296	The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf 2,135
297	A novel fluorescent retrograde neural tracer: cholera toxin B conjugated carbon dots. Nanoscale, 2015, 7, 15635-15642.	2.8	50
298	Surface Ligand Dynamics-Guided Preparation of Quantum Dots–Cellulose Composites for Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2015, 7, 15830-15839.	4.0	57
299	Effective increase in the refractive index of novel transparent silicone hybrid films by introduction of functionalized silicon nanoparticles. RSC Advances, 2015, 5, 62128-62133.	1.7	5
300	Preparation of ligand free Au NPs/PPV composites with high stability and photo-electric response. Chinese Journal of Polymer Science (English Edition), 2015, 33, 215-223.	2.0	4
301	High-Efficiency Aqueous-Solution-Processed Hybrid Solar Cells Based on P3HT Dots and CdTe Nanocrystals. ACS Applied Materials & Interfaces, 2015, 7, 7146-7152.	4.0	26
302	Controlling Flow Behavior of Water in Microfluidics with a Chemically Patterned Anisotropic Wetting Surface. Langmuir, 2015, 31, 4032-4039.	1.6	65
303	Investigating the surface state of graphene quantum dots. Nanoscale, 2015, 7, 7927-7933.	2.8	196
304	Efficient aqueous-processed hybrid solar cells from a polymer with a wide bandgap. Journal of Materials Chemistry A, 2015, 3, 10969-10975.	5.2	30
305	A dual-mode luminescent probe composed of co-assembled down-conversion CdTe and up-conversion NaYF ₄ :Yb,Tm(Er) nanoparticles. RSC Advances, 2015, 5, 48024-48030.	1.7	12
306	Au-Edged CuZnSe2Heterostructured Nanosheets with Enhanced Electrochemical Performance. Small, 2015, 11, 3583-3590.	5.2	8

#	Article	IF	CITATIONS
307	Photoluminescent graphene quantum dots for in vitro and in vivo bioimaging using long wavelength emission. RSC Advances, 2015, 5, 39399-39403.	1.7	42
308	Assembly-Induced Enhancement of Cu Nanoclusters Luminescence with Mechanochromic Property. Journal of the American Chemical Society, 2015, 137, 12906-12913.	6.6	367
309	Biomimetic Submicroarrayed Cross-Linked Liquid Crystal Polymer Films with Different Wettability via Colloidal Lithography. ACS Applied Materials & Interfaces, 2015, 7, 25522-25528.	4.0	34
310	Single and repeated dose toxicity of citric acid-based carbon dots and a derivative in mice. RSC Advances, 2015, 5, 91398-91406.	1.7	25
311	Hierarchical-Multiplex DNA Patterns Mediated by Polymer Brush Nanocone Arrays That Possess Potential Application for Specific DNA Sensing. ACS Applied Materials & Interfaces, 2015, 7, 24760-24771.	4.0	12
312	Phosphine-free synthesis of Ag–In–Se alloy nanocrystals with visible emissions. Nanoscale, 2015, 7, 18570-18578.	2.8	32
313	Aqueous-Processed Inorganic Thin-Film Solar Cells Based on CdSe _{<i>x</i>} Te _{1–<i>x</i>} Nanocrystals: The Impact of Composition on Photovoltaic Performance. ACS Applied Materials & Interfaces, 2015, 7, 23223-23230.	4.0	48
314	Efficient inorganic solar cells from aqueous nanocrystals: the impact of composition on carrier dynamics. RSC Advances, 2015, 5, 74263-74269.	1.7	25
315	Cupreous Complex-Loaded Chitosan Nanoparticles for Photothermal Therapy and Chemotherapy of Oral Epithelial Carcinoma. ACS Applied Materials & Interfaces, 2015, 7, 20801-20812.	4.0	58
316	Ag nanoparticle/polymer composite barcode nanorods. Nano Research, 2015, 8, 2871-2880.	5.8	16
317	Sustained release poly (lactic-co-glycolic acid) microspheres of bone morphogenetic protein 2 plasmid/calcium phosphate to promote in vitro bone formation and in vivo ectopic osteogenesis. American Journal of Translational Research (discontinued), 2015, 7, 2561-72.	0.0	8
318	Efficiently engineered cell sheet using a complex of polyethylenimine–alginate nanocomposites plus bone morphogenetic protein 2 gene to promote new bone formation. International Journal of Nanomedicine, 2014, 9, 2179.	3.3	19
319	Hydrazine-Mediated Construction of Nanocrystal Self-Assembly Materials. ACS Nano, 2014, 8, 10569-10581.	7.3	40
320	Bioinspired polyethylene terephthalate nanocone arrays with underwater superoleophobicity and anti-bioadhesion properties. Nanoscale, 2014, 6, 13845-13853.	2.8	70
321	The crosslink enhanced emission (CEE) in non-conjugated polymer dots: from the photoluminescence mechanism to the cellular uptake mechanism and internalization. Chemical Communications, 2014, 50, 13845-13848.	2.2	245
322	Investigation into the fluorescence quenching behaviors and applications of carbon dots. Nanoscale, 2014, 6, 4676.	2.8	360
323	Unraveling Charge Separation and Transport Mechanisms in Aqueousâ€Processed Polymer/CdTe Nanocrystal Hybrid Solar Cells. Advanced Energy Materials, 2014, 4, 1301882.	10.2	33
324	In Situ Construction of Nanoscale CdTeâ€CdS Bulk Heterojunctions for Inorganic Nanocrystal Solar Cells. Advanced Energy Materials, 2014, 4, 1400235.	10.2	44

#	Article	IF	CITATIONS
325	Dipâ€Coated Gold Nanoparticle Electrodes for Aqueousâ€Solutionâ€Processed Largeâ€Area Solar Cells. Advanced Energy Materials, 2014, 4, 1400135.	10.2	37
326	Common Origin of Green Luminescence in Carbon Nanodots and Graphene Quantum Dots. ACS Nano, 2014, 8, 2541-2547.	7.3	701
327	Plasmonic films based on colloidal lithography. Advances in Colloid and Interface Science, 2014, 206, 5-16.	7.0	70
328	Polypyrrole-Coated Chainlike Gold Nanoparticle Architectures with the 808 nm Photothermal Transduction Efficiency up to 70%. ACS Applied Materials & Interfaces, 2014, 6, 5860-5868.	4.0	83
329	Discriminating Cr(<scp>iii</scp>) and Cr(<scp>vi</scp>) using aqueous CdTe quantum dots with various surface ligands. RSC Advances, 2014, 4, 32946.	1.7	28
330	Tunable Polymer Brush/Au NPs Hybrid Plasmonic Arrays Based on Host–guest Interaction. ACS Applied Materials & Interfaces, 2014, 6, 19951-19957.	4.0	16
331	Nanotransfer printing of gold disk, ring and crescent arrays and their IR range optical properties. Journal of Materials Chemistry C, 2014, 2, 2333.	2.7	28
332	Facile fabrication of mesoporous N-doped Fe ₃ O ₄ @C nanospheres as superior anodes for Li-ion batteries. RSC Advances, 2014, 4, 713-716.	1.7	15
333	Bioimaging based on fluorescent carbon dots. RSC Advances, 2014, 4, 27184.	1.7	335
334	Highâ€Performance Plasmonic Sensors Based on Twoâ€Dimensional Ag Nanowell Crystals. Advanced Optical Materials, 2014, 2, 779-787.	3.6	40
335	Anisotropic Janus Si nanopillar arrays as a microfluidic one-way valve for gas–liquid separation. Nanoscale, 2014, 6, 3846-3853.	2.8	35
336	Novel cookie-with-chocolate carbon dots displaying extremely acidophilic high luminescence. Nanoscale, 2014, 6, 13939-13944.	2.8	44
337	Colloidal Selfâ€Assembly of Catalytic Copper Nanoclusters into Ultrathin Ribbons. Angewandte Chemie - International Edition, 2014, 53, 12196-12200.	7.2	78
338	Synthesis of a Waterâ€ 5 oluble Conjugated Polymer Based on Thiophene for an Aqueousâ€Processed Hybrid Photovoltaic and Photodetector Device. Advanced Materials, 2014, 26, 3655-3661.	11.1	35
339	Enhanced Biocompatibility of PLGA Nanofibers with Gelatin/Nano-Hydroxyapatite Bone Biomimetics Incorporation. ACS Applied Materials & Interfaces, 2014, 6, 9402-9410.	4.0	116
340	High-Efficiency Aqueous-Processed Hybrid Solar Cells with an Enormous Herschel Infrared Contribution. ACS Applied Materials & Interfaces, 2014, 6, 8606-8612.	4.0	23
341	Investigation of photoluminescence mechanism of graphene quantum dots and evaluation of their assembly into polymer dots. Carbon, 2014, 77, 462-472.	5.4	124
342	The fabrication of long-range ordered nanocrescent structures based on colloidal lithography and parallel imprinting. Nanotechnology, 2013, 24, 105307.	1.3	15

#	Article	IF	CITATIONS
343	Fabrication and applications of the protein patterns. Science China Chemistry, 2013, 56, 1087-1100.	4.2	13
344	A totally phosphine-free synthesis of metal telluride nanocrystals by employing alkylamides to replace alkylphosphines for preparing highly reactive tellurium precursors. Nanoscale, 2013, 5, 9593.	2.8	12
345	Creation of Transparent Nanocomposite Films with a Refractive Index of 2.3 Using Polymerizable Silicon Nanoparticles. Particle and Particle Systems Characterization, 2013, 30, 653-657.	1.2	14
346	Encapsulation of semiconductor quantum dots into the central cores of block copolymer cylindrical and toroidal micelles. RSC Advances, 2013, 3, 24625.	1.7	11
347	Aqueous-solution-processed hybrid solar cells with good thermal and morphological stability. Solar Energy Materials and Solar Cells, 2013, 109, 254-261.	3.0	26
348	A novel fluorescent polymer brushes film as a device for ultrasensitive detection of TNT. Journal of Materials Chemistry A, 2013, 1, 1201-1206.	5.2	33
349	Fabrication of polymerizable ZnS nanoparticles in N,N′-dimethylacrylamide and the resulting high refractive index optical materials. Polymer Chemistry, 2013, 4, 3963.	1.9	14
350	Hierarchical Polymer Brush Nanoarrays: A Versatile Way to Prepare Multiscale Patterns of Proteins. ACS Applied Materials & Interfaces, 2013, 5, 2126-2132.	4.0	30
351	Thermo-responsive photoluminescent polymer brushes device as a platform for selective detection of Cr(vi). Polymer Chemistry, 2013, 4, 5591.	1.9	35
352	Panchromatic plasmonic color patterns: from embedded Ag nanohole arrays to elevated Ag nanohole arrays. Journal of Materials Chemistry C, 2013, 1, 933-940.	2.7	21
353	Biochemical-to-optical signal transduction by pH sensitive organic–inorganic hybrid Bragg stacks with a full color display. Journal of Materials Chemistry C, 2013, 1, 977-983.	2.7	27
354	Coordinatable and High Charge arrierâ€Mobility Waterâ€Soluble Conjugated Copolymers for Effective Aqueousâ€Processed Polymer–Nanocrystal Hybrid Solar Cells and OFET Applications. Advanced Functional Materials, 2013, 23, 4035-4042.	7.8	26
355	Colloidal Synthesis and Sizeâ€Related Capacitance of Small Cobalt Sulfide Nanocrystals. Particle and Particle Systems Characterization, 2013, 30, 501-505.	1.2	6
356	Highly Photoluminescent Carbon Dots for Multicolor Patterning, Sensors, and Bioimaging. Angewandte Chemie - International Edition, 2013, 52, 3953-3957.	7.2	2,907
357	From planar-heterojunction to n–i structure: an efficient strategy to improve short-circuit current and power conversion efficiency of aqueous-solution-processed hybrid solar cells. Energy and Environmental Science, 2013, 6, 1597.	15.6	74
358	Inverted Hybrid Solar Cells from Aqueous Materials with a PCE of 3.61%. Advanced Energy Materials, 2013, 3, 433-437.	10.2	52
359	Unraveling Bright Molecule‣ike State and Dark Intrinsic State in Greenâ€Fluorescence Graphene Quantum Dots via Ultrafast Spectroscopy. Advanced Optical Materials, 2013, 1, 264-271.	3.6	144
360	Elliptical Polymer Brush Ring Array Mediated Protein Patterning and Cell Adhesion on Patterned Protein Surfaces. ACS Applied Materials & Interfaces, 2013, 5, 12587-12593.	4.0	30

#	Article	IF	CITATIONS
361	Morphology-controlled fabrication of elliptical nanoring arrays based on facile colloidal lithography. Journal of Materials Chemistry C, 2013, 1, 1122-1129.	2.7	13
362	High pressure phase transition of ZnO/SiO2 core/shell nanospheres. Journal of Applied Physics, 2013, 113, 054314.	1.1	5
363	Polymeric Nanospheres Containing Rare Earth Complexes and Colloidal Crystals with Luminescent Properties. Materials Research Society Symposia Proceedings, 2012, 1471, 7.	0.1	0
364	Fabrication of Binary and Ternary Hybrid Particles Based on Colloidal Lithography. Chemistry of Materials, 2012, 24, 4549-4555.	3.2	24
365	Shape-selective synthesis and facet-dependent electrocatalytic activity of CoPt3 nanocrystals. CrystEngComm, 2012, 14, 3359.	1.3	12
366	A facile approach to fabricate three-dimensional ordered macroporous rutile titania at low calcination temperature. Journal of Materials Chemistry, 2012, 22, 2435-2441.	6.7	24
367	Achieving high open-circuit voltage in the PPV-CdHgTe bilayer photovoltaic devices on the basis of the heterojunction interfacial modification. Journal of Materials Chemistry, 2012, 22, 9161.	6.7	16
368	Fabrication of CdTe nanoparticles-based superparticles for an improved detection of Cu ²⁺ and Ag ⁺ . Journal of Materials Chemistry, 2012, 22, 2679-2686.	6.7	50
369	Aqueous-solution-processed PPV–CdxHg1â^'xTe hybrid solar cells with a significant near-infrared contribution. Journal of Materials Chemistry, 2012, 22, 17827.	6.7	20
370	Formation of nanoparticles in solid-state matrices: a strategy for bulk transparent TiO2–polymer nanocomposites. Polymer Chemistry, 2012, 3, 3296.	1.9	13
371	A general route to make non-conjugated linear polymers luminescent. Chemical Communications, 2012, 48, 10889.	2.2	183
372	Graphene quantum dots with controllable surface oxidation, tunable fluorescence and up-conversion emission. RSC Advances, 2012, 2, 2717.	1.7	370
373	Embedding graphene nanoparticles into poly(N,N′-dimethylacrylamine) to prepare transparent nanocomposite films with high refractive index. Journal of Materials Chemistry, 2012, 22, 21218.	6.7	32
374	Hybridization of inorganic nanoparticles and polymers to create regular and reversible self-assembly architectures. Chemical Society Reviews, 2012, 41, 6066.	18.7	105
375	Polymer Bragg stack as color tunable photonic paper. Journal of Materials Chemistry, 2012, 22, 7887.	6.7	57
376	Patterning Organic/Inorganic Hybrid Bragg Stacks by Integrating One-Dimensional Photonic Crystals and Macrocavities through Photolithography: Toward Tunable Colorful Patterns as Highly Selective Sensors. ACS Applied Materials & Interfaces, 2012, 4, 1397-1403.	4.0	43
377	Preparation of polymer–nanocrystals hybrid solar cells through aqueous approaches. Nano Today, 2012, 7, 316-326.	6.2	37
378	Avoiding coffee ring structure based on hydrophobic silicon pillar arrays during single-drop evaporation. Soft Matter, 2012, 8, 10448.	1.2	61

#	Article	IF	CITATIONS
379	Polymer brush nanopatterns with controllable features for protein pattern applications. Journal of Materials Chemistry, 2012, 22, 25116.	6.7	30
380	Correlation between Annealing-Induced Growth of Nanocrystals and the Performance of Polymer: Nanocrystals Hybrid Solar Cells. Journal of Physical Chemistry C, 2012, 116, 1322-1328.	1.5	10
381	Elevated Ag nanohole arrays for high performance plasmonic sensors based on extraordinary optical transmission. Journal of Materials Chemistry, 2012, 22, 8903.	6.7	73
382	One-pot, seedless synthesis of flowerlike Au–Pd bimetallic nanoparticles with core-shell-like structure via sodium citrate coreduction of metal ions. CrystEngComm, 2012, 14, 7036.	1.3	33
383	Running droplet of interfacial chemical reaction flow. Soft Matter, 2012, 8, 5988.	1.2	29
384	Control the size and surface chemistry of graphene for the rising fluorescent materials. Chemical Communications, 2012, 48, 4527.	2.2	384
385	Surface Chemistry Routes to Modulate the Photoluminescence of Graphene Quantum Dots: From Fluorescence Mechanism to Upâ€Conversion Bioimaging Applications. Advanced Functional Materials, 2012, 22, 4732-4740.	7.8	1,019
386	Alkylthiol-Enabled Se Powder Dissolution in Oleylamine at Room Temperature for the Phosphine-Free Synthesis of Copper-Based Quaternary Selenide Nanocrystals. Journal of the American Chemical Society, 2012, 134, 7207-7210.	6.6	213
387	All-water-solution processed solar cells based on PPV and TiO2 nanocrystals. Solar Energy Materials and Solar Cells, 2012, 104, 75-80.	3.0	17
388	Fluorescent Nanocomposite Based on PVA Polymer Dots. Acta Chimica Sinica, 2012, 70, 2311.	0.5	23
389	Efficient polymer/nanocrystal hybrid solar cells fabricated from aqueous materials. Energy and Environmental Science, 2011, 4, 2831.	15.6	58
390	Aqueous-Solution-Processed Hybrid Solar Cells from Poly(1,4-naphthalenevinylene) and CdTe Nanocrystals. ACS Applied Materials & Interfaces, 2011, 3, 2919-2923.	4.0	32
391	Colorful detection of organic solvents based on responsive organic/inorganic hybrid one-dimensional photonic crystals. Journal of Materials Chemistry, 2011, 21, 1264-1270.	6.7	104
392	Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chemical Communications, 2011, 47, 6858.	2.2	1,458
393	Versatile fabrication of water-dispersible nanoparticle–amphiphilic copolymer composite microspheres with specific functionalities. Journal of Materials Chemistry, 2011, 21, 6837.	6.7	16
394	Polyurethane-based bulk nanocomposites from 1-thioglycerol-stabilized CdTe quantum dots with enhanced luminescence. Journal of Materials Chemistry, 2011, 21, 6569.	6.7	20
395	Controllable Synthesis of Stable Urchin-like Gold Nanoparticles Using Hydroquinone to Tune the Reactivity of Gold Chloride. Journal of Physical Chemistry C, 2011, 115, 3630-3637.	1.5	196
396	Simple Synthesis of Highly Luminescent Water-Soluble CdTe Quantum Dots with Controllable Surface Functionality. Chemistry of Materials, 2011, 23, 4857-4862.	3.2	124

#	Article	IF	CITATIONS
397	Preparation and potential application of functional ordered microstructures. Science China Chemistry, 2011, 54, 275-285.	4.2	3
398	Fabrication of Silicon/Polymer Composite Nanopost Arrays and Their Sensing Applications. Small, 2011, 7, 2769-2774.	5.2	24
399	Electropolymerization of highly hydrophobic polythiophene films with high adhesion force. Journal of Applied Polymer Science, 2011, 119, 1052-1059.	1.3	17
400	Antireflective surfaces based on biomimetic nanopillared arrays. Nano Today, 2010, 5, 117-127.	6.2	273
401	A two-step method combining electrodepositing and spin-coating for solar cell processing. Journal of Solid State Electrochemistry, 2010, 14, 1051-1056.	1.2	12
402	An effective method to prepare polymer/nanocrystal composites with tunable emission over the whole visible light range. Nano Research, 2010, 3, 496-505.	5.8	21
403	Patterning Colloidal Crystals and Nanostructure Arrays by Soft Lithography. Advanced Functional Materials, 2010, 20, 3411-3424.	7.8	133
404	Bioinspired Waterâ€Vaporâ€Responsive Organic/Inorganic Hybrid Oneâ€Dimensional Photonic Crystals with Tunable Fullâ€Color Stop Band. Advanced Functional Materials, 2010, 20, 3784-3790.	7.8	184
405	Colloidal Selfâ€Assembly Meets Nanofabrication: From Twoâ€Dimensional Colloidal Crystals to Nanostructure Arrays. Advanced Materials, 2010, 22, 4249-4269.	11.1	577
406	Improved light extraction efficiency of white organic light-emitting devices by biomimetic antireflective surfaces. Applied Physics Letters, 2010, 96, .	1.5	46
407	Thermal-induced surface plasmon band shift of gold nanoparticle monolayer: morphology and refractive index sensitivity. Nanotechnology, 2010, 21, 465702.	1.3	44
408	Bioinspired Silica Surfaces with Near-Infrared Improved Transmittance and Superhydrophobicity by Colloidal Lithography. Langmuir, 2010, 26, 9842-9847.	1.6	99
409	Mimicking the Rice Leaf—From Ordered Binary Structures to Anisotropic Wettability. Langmuir, 2010, 26, 14276-14283.	1.6	54
410	Full Color Plasmonic Nanostructured Surfaces and Their Sensor Applications. Journal of Physical Chemistry C, 2010, 114, 19908-19912.	1.5	13
411	Morphology-controlled two-dimensional elliptical hemisphere arrays fabricated by a colloidal crystal based micromolding method. Journal of Materials Chemistry, 2010, 20, 152-158.	6.7	25
412	"One-pot―synthesis and shape control of ZnSe semiconductor nanocrystals in liquid paraffin. Journal of Materials Chemistry, 2010, 20, 4451.	6.7	26
413	Organic–inorganic hybrid photonic hydrogels as a colorful platform for visual detection of SCNâ^. Chemical Communications, 2010, 46, 8636.	2.2	34
414	Biomimetic Surfaces for Highâ€Performance Optics. Advanced Materials, 2009, 21, 4731-4734.	11.1	84

# Artic	LE	IF	CITATIONS
415 High r of Ma	refractive index organic–inorganic nanocomposites: design, synthesis and application. Journal terials Chemistry, 2009, 19, 2884.	6.7	344
416 Manip	pulation of semiconductor nanocrystal growth in polymer soft solids. Soft Matter, 2009, 5, 4113.	1.2	13
417 A facil in situ	le one-pot route to transparent polymer nanocomposites with high ZnS nanophase contents via I bulk polymerization. Journal of Materials Chemistry, 2009, 19, 617-621.	6.7	47
418 Bioins water	pired silicon hollow-tip arrays for high performance broadband anti-reflective and -repellent coatings. Journal of Materials Chemistry, 2009, 19, 1806.	6.7	104
419 In situ 2008,	r preparation of nanoparticles/polymer composites. Science in China Series D: Earth Sciences, 51, 1886-1901.	0.9	25
420 From nanop	two-dimensional metal-organic coordination networks to near-infrared luminescent PbS particle/layered polymer composite materials. Nano Research, 2008, 1, 195-202.	5.8	9
421 Forma Selfâ€	ation of Ordered Twoâ€Dimensional Polymer Latticeworks With Polygonal Meshes by EOrganized Anisotropic Mass Transfer. Macromolecular Chemistry and Physics, 2008, 209, 247-257.	1.1	11
422 A Univ Colloi	versal Approach to Fabricate Various Nanoring Arrays Based on a dalâ€Crystalâ€Assistedâ€Lithography Strategy. Advanced Functional Materials, 2008, 18, 4036-4042.	7.8	64
Inside 423 Colloi Mater	Front Cover: A Universal Approach to Fabricate Various Nanoring Arrays Based on a dal-Crystal-Assisted-Lithography Strategy (Adv. Funct. Mater. 24/2008). Advanced Functional ials, 2008, 18, NA-NA.	7.8	0
One-S 424 CdHg Mater	Step Synthesis of High-Quality Gradient CdHgTe Nanocrystals: A Prerequisite to Prepare Teâ ''Polymer Bulk Composites with Intense Near-Infrared Photoluminescence. Chemistry of ials, 2008, 20, 6764-6769.	3.2	82
425 Prepa conte	ration and properties of transparent bulk polymer nanocomposites with high nanophase nts. Journal of Materials Chemistry, 2008, 18, 4062.	6.7	46
426 Assen layer-l	nbly of non-close-packed 3D colloidal crystals from 2D ones in a polymer matrix viain situ by-layer photopolymerization. Journal of Materials Chemistry, 2008, 18, 3536.	6.7	16
427 Prepa E-Poly	ration of fluorescent poly(methylmethacrylate) nano capsules via internal phase separation. mers, 2007, 7, .	1.3	2
428 Synth polym	esis and characterization of ABS resin usingin situ transferring from emulsion to suspension nerization. Polymer International, 2007, 56, 195-199.	1.6	4
429 Synth QDs-L	esis of Quantum Dots Labeled Short Peptides and Imaging the T cell Surface Receptors with abeled Peptides. International Journal of Peptide Research and Therapeutics, 2007, 13, 399-404.	0.9	1
430 Fabric Journa	ating a binary pattern of ordered two-dimensional luminescent (mdppy)BF arrays by dewetting. al of Materials Chemistry, 2006, 16, 2135.	6.7	14
431 Prepa nanoc	ration and characterization of high refractive index thin films of TiO2/epoxy resin composites. Journal of Applied Polymer Science, 2006, 102, 1631-1636.	1.3	71

432 Cover Picture: Luminescent One-Dimensional Nanoscale Materials with Ptlla<...a<...Ptll Interactions (Angew.) Tj ETOq0 0 0,rgBT /Over

#	Article	IF	CITATIONS
433	Surface enhanced Raman scattering from a hierarchical substrate of micro/nanostructured silver. Journal of Raman Spectroscopy, 2006, 37, 755-761.	1.2	29
434	Preparation of Carbazole-Containing Amphiphilic Copolymers: An Efficient Method for the Incorporation of Functional Nanocrystals. Macromolecular Materials and Engineering, 2006, 291, 929-936.	1.7	11
435	Study on emulsion and suspensionin situ polymerization. Journal of Applied Polymer Science, 2005, 95, 404-412.	1.3	12
436	Two-substrate vertical deposition for stable colloidal crystal chips. Science Bulletin, 2005, 50, 765-769.	1.7	1
437	Fluorescent Nanocrystalâ^'Polymer Composites from Aqueous Nanocrystals:Â Methods without Ligand Exchange. Chemistry of Materials, 2005, 17, 4783-4788.	3.2	103
438	Synthesis and properties of novel crosslinkable second-order nonlinear optical polymers based on 2,3,4,5,6-pentafluorostyrene. Polymer International, 2004, 53, 1106-1112.	1.6	3
439	High refractive index thin films of ZnS/polythiourethane nanocomposites. Journal of Materials Chemistry, 2003, 13, 526-530.	6.7	142
440	Research on Preparation, Structure and Properties of TiO2/Polythiourethane Hybrid Optical Films with High Refractive Index. Macromolecular Materials and Engineering, 2003, 288, 717-723.	1.7	124
441	Monodisperse Silica-Polymer Core-Shell Microspheres via Surface Grafting and Emulsion Polymerization. Macromolecular Materials and Engineering, 2003, 288, 380-385.	1.7	187
442	Studies on syntheses and properties of episulfide-type optical resins with high refractive index. Journal of Applied Polymer Science, 2003, 89, 2426-2430.	1.3	66
443	Lanthanide complex/polymer composite optical resin with intense narrow band emission, high transparency and good mechanical performance. Journal of Materials Chemistry, 2003, 13, 2279.	6.7	85
444	Binary DNA Arrays on Heterogeneous Patterned Surfaces. Langmuir, 2003, 19, 9850-9854.	1.6	27
445	The Influence of Carboxyl Groups on the Photoluminescence of Mercaptocarboxylic Acid-Stabilized CdTe Nanoparticles. Journal of Physical Chemistry B, 2003, 107, 8-13.	1.2	581
446	Preparation and characterization of ZnS–polymer nanocomposite films with high refractive index. Journal of Materials Chemistry, 2003, 13, 2189-2195.	6.7	163
447	A novel method for the layer-by-layer assembly of metal nanoparticles transported by polymer microspheres. Journal of Materials Chemistry, 2003, 13, 514-517.	6.7	35
448	Controlled assembly of fluorescent multilayers from an aqueous solution of CdTe nanocrystals and nonionic carbazole-containing copolymers. Journal of Materials Chemistry, 2003, 13, 1356.	6.7	18
449	Polymerization mechanisms and curing kinetics of novel polymercaptan curing system containing epoxy/nitrogen. Journal of Applied Polymer Science, 2002, 86, 589-595.	1.3	8
450	Covalent attachment of deoxyribonucleic acid (DNA) to diazo-resin (DAR) in self-assembled multilayer films. Polymer Bulletin, 2002, 47, 445-450.	1.7	4

#	Article	IF	CITATIONS
451	An oligo-phenylenevinylene derivative encapsulated in sol–gel silica matrix. Journal of Materials Chemistry, 2001, 11, 1370-1373.	6.7	12
452	Study on syntheses and properties of 2,2?-mercaptoethylsulfide dimethacrylate transparent homo- and copolymer resins having high refractive index. Journal of Applied Polymer Science, 2000, 75, 1474-1479.	1.3	49
453	Assembly and Photoelectrochemical Studies of TiO ₂ /CdS Nanocomposite Film. Molecular Crystals and Liquid Crystals, 1999, 337, 181-184.	0.3	6
454	Core-shell Nanoparticles Reinforced Polystyrene with no Effect on its Transparency. International Journal of Polymeric Materials and Polymeric Biomaterials, 1997, 35, 13-19.	1.8	3
455	Photoluminescence and electroluminescence of ZnS:Cu nanocrystals in polymeric networks. Applied Physics Letters, 1997, 70, 2335-2337.	1.5	231
456	Preparation and characterization of Cu2S/CdS/ZnS nanocomposite in polymeric networks. Polymer Bulletin, 1996, 37, 679-682.	1.7	23
457	Synthesis of the CdS nanoparticles in polymer networks. Polymer Bulletin, 1996, 36, 337-340.	1.7	44
458	Elucidating the endocytosis, intracellular trafficking, and exocytosis of carbon dots in neural cells. RSC Advances, 0, , .	1.7	24