
Rumiana Dimova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4250087/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Superâ€Resolution Imaging of Highly Curved Membrane Structures in Giant Vesicles Encapsulating Molecular Condensates. Advanced Materials, 2022, 34, e2106633.	11.1	19
2	Fusionâ€Induced Growth of Biomimetic Polymersomes: Behavior of Poly(dimethylsiloxane)â€Poly(ethylene) Tj I 2022, 43, e2100712.	2.0 TQq0	rgBT /Overloch 6
3	Controlled adhesion, membrane pinning and vesicle transport by Janus particles. Chemical Communications, 2022, 58, 3055-3058.	2.2	6
4	Magainin 2 and PGLa in Bacterial Membrane Mimics III: Membrane Fusion and Disruption. Biophysical Journal, 2022, , .	0.2	4
5	Femtoliter Injection of ESCRT-III Proteins into Adhered Giant Unilamellar Vesicles. Bio-protocol, 2022, 12, e4328.	0.2	Ο
6	Integrin α _{IIb} β ₃ Activation and Clustering in Minimal Synthetic Cells. Advanced NanoBiomed Research, 2022, 2, .	1.7	3
7	A vesicle microrheometer for high-throughput viscosity measurements of lipid and polymer membranes. Biophysical Journal, 2022, 121, 910-918.	0.2	34
8	Increased efficiency of charge-mediated fusion in polymer/lipid hybrid membranes. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2122468119.	3.3	13
9	GM1 asymmetry in the membrane stabilizes pores. Biophysical Journal, 2022, 121, 3295-3302.	0.2	9
10	Characterization of DAG Binding to TRPC Channels by Target-Dependent cis–trans Isomerization of OptoDArG. Biomolecules, 2022, 12, 799.	1.8	7
11	Interactions of polycyclic aromatic hydrocarbons and their nitro derivatives with bilayer and monolayer models of fungal membranes. Journal of Molecular Liquids, 2022, 360, 119591.	2.3	3
12	Spatiotemporal Measurement of Osmotic Pressures by FRET Imaging. Angewandte Chemie - International Edition, 2021, 60, 6488-6495.	7.2	8
13	Spatiotemporal Measurement of Osmotic Pressures by FRET Imaging. Angewandte Chemie, 2021, 133, 6562-6569.	1.6	1
14	Introduction to remodeling of biomembranes. Soft Matter, 2021, 17, 214-221.	1.2	14
15	Inhibition of Viral Fusion by Interferon-Induced Transmembrane Proteins. Biophysical Journal, 2021, 120, 2a.	0.2	0
16	Interferon-Induced Transmembrane Protein 3 Blocks Fusion of Diverse Enveloped Viruses by Altering Mechanical Properties of Cell Membranes. ACS Nano, 2021, 15, 8155-8170.	7.3	50
17	To Close or to Collapse: The Role of Charges on Membrane Stability upon Pore Formation. Advanced Science, 2021, 8, e2004068.	5.6	21
18	The ESCRT-III machinery participates in the production of extracellular vesicles and protein export during Plasmodium falciparum infection. PLoS Pathogens, 2021, 17, e1009455.	2.1	27

#	Article	IF	CITATIONS
19	A needless but interesting controversy. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	22
20	En route to dynamic life processes by SNARE-mediated fusion of polymer and hybrid membranes. Nature Communications, 2021, 12, 4972.	5.8	21
21	Electromechanical characterization of biomimetic membranes using electrodeformation of vesicles. Electrophoresis, 2021, 42, 2027-2032.	1.3	9
22	Superelasticity of Plasma―and Synthetic Membranes Resulting from Coupling of Membrane Asymmetry, Curvature, and Lipid Sorting. Advanced Science, 2021, 8, e2102109.	5.6	19
23	ESCRT-III induces phase separation in model membranes prior to budding and causes invagination of the liquid-ordered phase. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183689.	1.4	7
24	PoET: automated approach for measuring pore edge tension in giant unilamellar vesicles. Bioinformatics Advances, 2021, 1, .	0.9	13
25	Simple sugars shape giant vesicles into multispheres with many membrane necks. Soft Matter, 2020, 16, 1246-1258.	1.2	46
26	Membrane permeability to water measured by microfluidic trapping of giant vesicles. Soft Matter, 2020, 16, 7359-7369.	1.2	19
27	Frontispiz: Reversible pHâ€Responsive Coacervate Formation in Lipid Vesicles Activates Dormant Enzymatic Reactions. Angewandte Chemie, 2020, 132, .	1.6	1
28	Frontispiece: Reversible pHâ€Responsive Coacervate Formation in Lipid Vesicles Activates Dormant Enzymatic Reactions. Angewandte Chemie - International Edition, 2020, 59, .	7.2	0
29	Selective Partitioning of (Biomacro)molecules in the Crowded Environment of Double-Hydrophilic Block Copolymers. Macromolecules, 2020, 53, 10179-10188.	2.2	10
30	Resolving the Mechanisms of Soy Glycinin Self-Coacervation and Hollow-Condensate Formation. ACS Macro Letters, 2020, 9, 1844-1852.	2.3	23
31	Fluctuation spectroscopy of giant unilamellar vesicles using confocal and phase contrast microscopy. Soft Matter, 2020, 16, 8996-9001.	1.2	38
32	Constructing artificial respiratory chain in polymer compartments: Insights into the interplay between <i>bo</i> _{<i>3</i>} oxidase and the membrane. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15006-15017.	3.3	37
33	Aggregation and Crosslinking of Poly(N,N â€dimethylacrylamide)―b â€pullulan Double Hydrophilic Block Copolymers. Macromolecular Chemistry and Physics, 2020, 221, 2000053.	1.1	8
34	Controlled division of cell-sized vesicles by low densities of membrane-bound proteins. Nature Communications, 2020, 11, 905.	5.8	143
35	Transient Electrodeformation of Giant Unilamellar Vesicles (GUVS) to Probe Membrane Viscosity. Biophysical Journal, 2020, 118, 322a.	0.2	0
36	Reconstitution of Respiratory Enzymes in PDMS-g-PEO Polymer and Polymer/Lipid Hybrid Vesicles. Biophysical Journal, 2020, 118, 131a.	0.2	0

#	Article	IF	CITATIONS
37	Reversible pHâ€Responsive Coacervate Formation in Lipid Vesicles Activates Dormant Enzymatic Reactions. Angewandte Chemie - International Edition, 2020, 59, 5950-5957.	7.2	139
38	Reversible pHâ€Responsive Coacervate Formation in Lipid Vesicles Activates Dormant Enzymatic Reactions. Angewandte Chemie, 2020, 132, 6006-6013.	1.6	29
39	Mechanical Tension of Biomembranes Can Be Measured by Super Resolution (STED) Microscopy of Force-Induced Nanotubes. Nano Letters, 2020, 20, 3185-3191.	4.5	21
40	Light controlled cell-to-cell adhesion and chemical communication in minimal synthetic cells. Chemical Communications, 2019, 55, 9448-9451.	2.2	31
41	Bending rigidity of charged lipid bilayer membranes. Soft Matter, 2019, 15, 6006-6013.	1.2	82
42	Optimization of the Inverted Emulsion Method for High‥ield Production of Biomimetic Giant Unilamellar Vesicles. ChemBioChem, 2019, 20, 2674-2682.	1.3	77
43	Mechanical properties of plasma membrane vesicles correlate with lipid order, viscosity and cell density. Communications Biology, 2019, 2, 337.	2.0	105
44	Poly(Ionic Liquid) Nanoparticles Selectively Disrupt Biomembranes. Advanced Science, 2019, 6, 1801602.	5.6	14
45	Interaction of SNARE Mimetic Peptides with Lipid bilayers: Effects of Secondary Structure, Bilayer Composition and Lipid Anchoring. Scientific Reports, 2019, 9, 7708.	1.6	9
46	Behavior of the DPH fluorescence probe in membranes perturbed by drugs. Chemistry and Physics of Lipids, 2019, 223, 104784.	1.5	47
47	Compartments for Synthetic Cells: Osmotically Assisted Separation of Oil from Double Emulsions in a Microfluidic Chip. ChemBioChem, 2019, 20, 2604-2608.	1.3	19
48	Giant Vesicles Encapsulating Aqueous Two-Phase Systems: From Phase Diagrams to Membrane Shape Transformations. Frontiers in Chemistry, 2019, 7, 213.	1.8	18
49	Giant Vesicles and Their Use in Assays for Assessing Membrane Phase State, Curvature, Mechanics, and Electrical Properties. Annual Review of Biophysics, 2019, 48, 93-119.	4.5	97
50	Lipid Charge Increases the Bending Rigidity of Bilayer Membranes. Biophysical Journal, 2019, 116, 507a.	0.2	1
51	Directed Growth of Biomimetic Microcompartments. Advanced Biology, 2019, 3, e1800314.	3.0	25
52	Budding and Fission of Vesicles by Control of Membrane Spontaneous Curvature. Biophysical Journal, 2019, 116, 328a-329a.	0.2	2
53	13. Giant vesicles: A biomimetic tool for assessing membrane material properties and interactions. , 2019, , 415-440.		0
54	Fusion assays for model membranes: a critical review. Advances in Biomembranes and Lipid Self-Assembly, 2019, , 229-270.	0.3	11

#	Article	IF	CITATIONS
55	Highly Efficient Protein-free Membrane Fusion: AÂGiant Vesicle Study. Biophysical Journal, 2019, 116, 79-91.	0.2	76
56	Preparation methods for giant unilamellar vesicles. , 2019, , 3-20.		3
57	Membrane Nanotubes Increase the Robustness of Giant Vesicles. ACS Nano, 2018, 12, 4478-4485.	7.3	56
58	Super Resolution Imaging of Highly Curved Membrane Structures in Giant Unilamellar Vesicles Encapsulating Polymer Solutions. Biophysical Journal, 2018, 114, 100a-101a.	0.2	1
59	Dynamic blue light-switchable protein patterns on giant unilamellar vesicles. Chemical Communications, 2018, 54, 948-951.	2.2	27
60	Sucrose solutions alter the electric capacitance and dielectric permittivity of lipid bilayers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 557, 51-57.	2.3	22
61	Sequential bottom-up assembly of mechanically stabilized synthetic cells by microfluidics. Nature Materials, 2018, 17, 89-96.	13.3	314
62	Asymmetric Ionic Conditions Generate Large Membrane Curvatures. Nano Letters, 2018, 18, 7816-7821.	4.5	63
63	Spatial Relationship and Functional Relevance of Three Lipid Domain Populations at the Erythrocyte Surface. Cellular Physiology and Biochemistry, 2018, 51, 1544-1565.	1.1	32
64	Light-Guided Motility of a Minimal Synthetic Cell. Nano Letters, 2018, 18, 7268-7274.	4.5	47
65	Liposomes and polymersomes: a comparative review towards cell mimicking. Chemical Society Reviews, 2018, 47, 8572-8610.	18.7	731
66	MaxSynBio: Wege zur Synthese einer Zelle aus nicht lebenden Komponenten. Angewandte Chemie, 2018, 130, 13566-13577.	1.6	27
67	Membrane fluctuations and acidosis regulate cooperative binding of "marker of self―CD47 with macrophage checkpoint receptor SIRPα. Journal of Cell Science, 2018, 132, .	1.2	45
68	The glycolipid GM1 reshapes asymmetric biomembranes and giant vesicles by curvature generation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5756-5761.	3.3	95
69	Micron-sized domains in quasi single-component giant vesicles. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 1957-1964.	1.4	19
70	The 2018 biomembrane curvature and remodeling roadmap. Journal Physics D: Applied Physics, 2018, 51, 343001.	1.3	212
71	The Conserved ESCRT-III Machinery Participates in the Phagocytosis of Entamoeba histolytica. Frontiers in Cellular and Infection Microbiology, 2018, 8, 53.	1.8	40
72	MaxSynBio: Avenues Towards Creating Cells from the Bottom Up. Angewandte Chemie - International Edition, 2018, 57, 13382-13392.	7.2	234

#	Article	IF	CITATIONS
73	Charged giant unilamellar vesicles prepared by electroformation exhibit nanotubes and transbilayer lipid asymmetry. Scientific Reports, 2018, 8, 11838.	1.6	86
74	Area Increase and Budding in Giant Vesicles Triggered by Light: Behind the Scene. Advanced Science, 2018, 5, 1800432.	5.6	37
75	Mimicking Cell Pinocytosis: Lipid Vesicles Engulfment of Oil-in-Water Droplets. Biophysical Journal, 2018, 114, 94a-95a.	0.2	1
76	Copper ATPase CopA from <i>Escherichia coli</i> : Quantitative Correlation between ATPase Activity and Vectorial Copper Transport. Journal of the American Chemical Society, 2017, 139, 4266-4269.	6.6	14
77	GM1 Softens the Membrane, Induces Domains and Causes Spontaneous Tubulation in Giant Vesicles. Biophysical Journal, 2017, 112, 42a.	0.2	0
78	Electrodeformation, Electroporation, and Electrofusion of Giant Unilamellar Vesicles. , 2017, , 235-252.		8
79	Fusion and scission of membranes: Ubiquitous topological transformations in cells. Traffic, 2017, 18, 758-761.	1.3	11
80	Phase Behavior of Charged Vesicles Under Symmetric and Asymmetric Solution Conditions Monitored with Fluorescence Microscopy. Journal of Visualized Experiments, 2017, , .	0.2	14
81	Giant Vesicles Exposed to Aqueous Twoâ€Phase Systems: Membrane Wetting, Budding Processes, and Spontaneous Tubulation. Advanced Materials Interfaces, 2017, 4, 1600451.	1.9	34
82	Molar mass fractionation in aqueous two-phase polymer solutions of dextran and poly(ethylene) Tj ETQq0 0 0 rg	gBT /Qverl 1.8	ock 10 Tf 50 3
83	Modulating Vesicle Adhesion by Electric Fields. Biophysical Journal, 2016, 111, 1454-1464.	0.2	29
84	Posing for a picture: vesicle immobilization in agarose gel. Scientific Reports, 2016, 6, 25254.	1.6	56
85	GM1 Softens POPC Membranes and Induces the Formation of Micron-Sized Domains. Biophysical Journal, 2016, 111, 1935-1945.	0.2	39
86	Solution Asymmetry and Salt Expand Fluid-Fluid Coexistence Regions of Charged Membranes. Biophysical Journal, 2016, 110, 2581-2584.	0.2	34
87	Patterns of Flexible Nanotubes Formed by Liquid-Ordered and Liquid-Disordered Membranes. ACS Nano, 2016, 10, 463-474.	7.3	79
88	Electrodeformation, Electroporation, and Electrofusion of Giant Unilamellar Vesicles. , 2016, , 1-18.		3
89	Measuring the Intrinsic Curvature of Ganglioside GM1. Biophysical Journal, 2015, 108, 239a.	0.2	1
90	Light-Induced Transformations in Lipid Membranes. Biophysical Journal, 2015, 108, 240a.	0.2	0

#	Article	IF	CITATIONS
91	Variable Adhesion Strength for Giant Unilamellar Vesicles Controlled by External Electrostatic Potentials. Biophysical Journal, 2015, 108, 402a.	0.2	0
92	Protein-Free Membrane Fusion Probed by Single Giant Unilamellar Vesicle Imaging - the Role of Membrane Charge. Biophysical Journal, 2015, 108, 181a.	0.2	0
93	Physics vs Biology of Phagocytosis: Cell Rigidity and Shape Override CD47 â€~Self' Signaling in Phagocytosis by Hyperactivating Myosin-II. Biophysical Journal, 2015, 108, 180a.	0.2	1
94	Ellipsoidal Relaxation of Deformed Vesicles. Physical Review Letters, 2015, 115, 128303.	2.9	42
95	Cell rigidity and shape override CD47's "self―signaling in phagocytosis by hyperactivating myosin-II. Blood, 2015, 125, 542-552.	0.6	122
96	How GM1 Affects the Phase State and Mechanical Properties of Phospholipid Membranes. Biophysical Journal, 2015, 108, 18a.	0.2	0
97	Viscoelasticity of Poly(ethylene glycol) Solutions on Supported Lipid Bilayers via Quartz Crystal Microbalance with Dissipation. Macromolecules, 2015, 48, 1824-1831.	2.2	24
98	Autophagosome closure requires membrane scission. Autophagy, 2015, 11, 2134-2137.	4.3	66
99	Inward and outward membrane tubes pulled from giant vesicles. Journal Physics D: Applied Physics, 2014, 47, 282001.	1.3	29
100	Recent developments in the field of bending rigidity measurements on membranes. Advances in Colloid and Interface Science, 2014, 208, 225-234.	7.0	400
101	Giant Unilamellar Vesicles Formed by Hybrid Films of Agarose and Lipids Display Altered Mechanical Properties. Biophysical Journal, 2014, 107, 1609-1619.	0.2	72
102	Effect of cytochrome c on the phase behavior of charged multicomponent lipid membranes. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 2036-2045.	1.4	26
103	Electroporation Dynamics of Giant Vesicles with Encapsulated Gel and in the Presence of Salt or Detergents. Biophysical Journal, 2014, 106, 290a.	0.2	0
104	Vesicles in Electric Fields. Biophysical Journal, 2014, 106, 2a-3a.	0.2	0
105	Adhesion-Induced Domain Formation in Multicomponent Membranes. Biophysical Journal, 2014, 106, 287a.	0.2	1
106	Membrane Morphology Is Actively Transformed by Covalent Binding of the Protein Atg8 to PE-Lipids. PLoS ONE, 2014, 9, e115357.	1.1	58
107	Studying Membrane Tubes with Positive and Negative Curvatures in Giant Vesicles. , 2014, , .		0
108	Electrochemical Detection of Single Microbeads Manipulated by Optical Tweezers in the Vicinity of Ultramicroelectrodes. Analytical Chemistry, 2013, 85, 8902-8909.	3.2	12

#	Article	IF	CITATIONS
109	Phase Diagram and Tie-Line Determination for the Ternary Mixture DOPC/eSM/Cholesterol. Biophysical Journal, 2013, 104, 1456-1464.	0.2	97
110	Macro- versus Microscopic View on the Electrokinetics of a Water–Membrane Interface. Langmuir, 2013, 29, 7939-7948.	1.6	15
111	Insights on the Interactions of Chitosan with Phospholipid Vesicles. Part I: Effect of Polymer Deprotonation. Langmuir, 2013, 29, 14545-14551.	1.6	38
112	Insights on the Interactions of Chitosan with Phospholipid Vesicles. Part II: Membrane Stiffening and Pore Formation. Langmuir, 2013, 29, 14552-14559.	1.6	53
113	Giant Vesicles. Behavior Research Methods, 2012, 16, 1-50.	2.3	15
114	Electrodeformation method for measuring the capacitance of bilayer membranes. Soft Matter, 2012, 8, 3810.	1.2	50
115	Wetting-Induced Budding of Vesicles in Contact with Several Aqueous Phases. Journal of Physical Chemistry B, 2012, 116, 1819-1823.	1.2	43
116	Concentration Dependence of the Interfacial Tension for Aqueous Two-Phase Polymer Solutions of Dextran and Polyethylene Glycol. Langmuir, 2012, 28, 3831-3839.	1.6	118
117	Lipid membranes in contact with aqueous phases of polymer solutions. Soft Matter, 2012, 8, 6409.	1.2	38
118	Solution Behavior of Double-Hydrophilic Block Copolymers in Dilute Aqueous Solution. Macromolecules, 2012, 45, 4772-4777.	2.2	62
119	Curvature of Double-Membrane Organelles Generated by Changes in Membrane Size and Composition. PLoS ONE, 2012, 7, e32753.	1.1	54
120	Binding of Chitosan to Phospholipid Vesicles Studied with Isothermal Titration Calorimetry. Langmuir, 2011, 27, 5506-5515.	1.6	98
121	The intrinsically disordered late embryogenesis abundant protein LEA18 from Arabidopsis thaliana modulates membrane stability through binding and folding. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 446-453.	1.4	48
122	Boron Carbon Nitride Nanostructures from Salt Melts: Tunable Water-Soluble Phosphors. Journal of the American Chemical Society, 2011, 133, 7121-7127.	6.6	428
123	Effect of the HIV-1 fusion peptide on the mechanical properties and leaflet coupling of lipid bilayers. New Journal of Physics, 2011, 13, 025004.	1.2	72
124	Membrane nanotubes induced by aqueous phase separation and stabilized by spontaneous curvature. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4731-4736.	3.3	141
125	Interactions of Alkali Metal Chlorides with Phosphatidylcholine Vesicles. Langmuir, 2010, 26, 18951-18958.	1.6	120
126	Cooperative behavior of molecular motors: Cargo transport and traffic phenomena. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 649-661.	1.3	38

#	Article	IF	CITATIONS
127	HIV Fusion Peptides Significantly Soften Lipid Bilayers. Biophysical Journal, 2010, 98, 279a.	0.2	Ο
128	Electric Fields and Giant Vesicles. Biophysical Journal, 2010, 98, 77a.	0.2	2
129	A New Method for Measuring Edge Tensions and Stability of Lipid Bilayers: Effect of Membrane Composition. Biophysical Journal, 2010, 99, 3264-3273.	0.2	151
130	Stability of Spherical Vesicles in Electric Fields. Langmuir, 2010, 26, 12390-12407.	1.6	60
131	Vesicles with charged domains. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 1338-1347.	1.4	63
132	Entropic Effects and Slow Kinetics Revealed in Titrations of D ₂ Oâ^'H ₂ O Solutions with Different D/H Ratios. Journal of Physical Chemistry B, 2010, 114, 5755-5763.	1.2	16
133	Effect of cholesterol on the rigidity of saturated and unsaturated membranes: fluctuation and electrodeformation analysis of giant vesicles. Soft Matter, 2010, 6, 1472.	1.2	301
134	Wrinkling and electroporation of giant vesicles in the gel phase. Soft Matter, 2010, 6, 1990.	1.2	58
135	Intrinsic Contact Angle of Aqueous Phases at Membranes and Vesicles. Physical Review Letters, 2009, 103, 238103.	2.9	50
136	ACTIVE BIO-SYSTEMS: FROM SINGLE MOTOR MOLECULES TO COOPERATIVE CARGO TRANSPORT. Biophysical Reviews and Letters, 2009, 04, 77-137.	0.9	12
137	Thermal property changes of poly(N-isopropylacrylamide) microgel particles and block copolymers. Colloid and Polymer Science, 2009, 287, 299-312.	1.0	93
138	Nanoparticle Formation in Giant Vesicles: Synthesis in Biomimetic Compartments. Small, 2009, 5, 2033-2037.	5.2	57
139	Calcium Binding and Head Group Dipole Angle in Phosphatidylserineâ^'Phosphatidylcholine Bilayers. Langmuir, 2009, 25, 1020-1027.	1.6	84
140	Electrohydrodynamic Model of Vesicle Deformation in Alternating Electric Fields. Biophysical Journal, 2009, 96, 4789-4803.	0.2	118
141	Vesicles in electric fields: Some novel aspects of membrane behavior. Soft Matter, 2009, 5, 3201.	1.2	155
142	Bursting of charged multicomponent vesicles subjected to electric pulses. Soft Matter, 2009, 5, 1983.	1.2	48
143	Traffic by Small Teams of Molecular Motors. , 2009, , 695-700.		0
144	Transport of Beads by Several Kinesin Motors. Biophysical Journal, 2008, 94, 532-541.	0.2	177

#	Article	IF	CITATIONS
145	Morphological Transitions of Vesicles Induced by Alternating Electric Fields. Biophysical Journal, 2008, 95, L19-L21.	0.2	92
146	Membrane flow patterns in multicomponent giant vesicles induced by alternating electric fields. Soft Matter, 2008, 4, 2168.	1.2	34
147	Transition from Complete to Partial Wetting within Membrane Compartments. Journal of the American Chemical Society, 2008, 130, 12252-12253.	6.6	79
148	Optical tweezers in interaction with an apertureless probe. Journal of Applied Physics, 2007, 102, 024915.	1.1	2
149	Giant vesicles in electric fields. Soft Matter, 2007, 3, 817.	1.2	201
150	Novel Method for Measuring the Adhesion Energy of Vesicles. Langmuir, 2007, 23, 5423-5429.	1.6	37
151	Behavior of Giant Vesicles with Anchored DNA Molecules. Biophysical Journal, 2007, 92, 4356-4368.	0.2	70
152	Control of the interaction between membranes or vesicles: Adhesion, fusion and release of dyes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 303, 89-96.	2.3	23
153	Optical Dynamometry to Study Phase Transitions in Lipid Membranes. Methods in Molecular Biology, 2007, 400, 227-236.	0.4	2
154	Binding of Ion Pairs onto Polymer Gels via Dehydration Entropy:Â A New Mechanism for Ion Exchange. Macromolecules, 2006, 39, 6310-6312.	2.2	12
155	Electric Pulses Induce Cylindrical Deformations on Giant Vesicles in Salt Solutions. Biophysical Journal, 2006, 91, 1778-1786.	0.2	94
156	Binding of calcium to phosphatidylcholine–phosphatidylserine membranes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 282-283, 410-419.	2.3	135
157	ELECTROFUSION OF MODEL LIPID MEMBRANES VIEWED WITH HIGH TEMPORAL RESOLUTION. Biophysical Reviews and Letters, 2006, 01, 387-400.	0.9	29
158	Implementing both short- and long-working-distance optical trappings into a commercial microscope. Review of Scientific Instruments, 2006, 77, 113703.	0.6	21
159	Time scales of membrane fusion revealed by direct imaging of vesicle fusion with high temporal resolution. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 15841-15846.	3.3	219
160	A practical guide to giant vesicles. Probing the membrane nanoregime via optical microscopy. Journal of Physics Condensed Matter, 2006, 18, S1151-S1176.	0.7	266
161	Droplets, bubbles, and vesicles at chemically structured surfaces. Journal of Physics Condensed Matter, 2005, 17, S537-S558.	0.7	43
162	Wetting, budding, and fusion—morphological transitions of soft surfaces. Journal of Physics Condensed Matter, 2005, 17, S2885-S2902.	0.7	25

#	Article	IF	CITATIONS
163	Influence of different salts on micro-sized polyelectrolyte hollow capsules. Journal of Materials Chemistry, 2005, 15, 4301.	6.7	41
164	Composition dependence of vesicle morphology and mixing properties in a bacterial model membrane system. Biochimica Et Biophysica Acta - Biomembranes, 2005, 1716, 40-48.	1.4	114
165	Electro-Deformation and Poration of Giant Vesicles Viewed with High Temporal Resolution. Biophysical Journal, 2005, 88, 1143-1155.	0.2	239
166	Isothermal Titration Calorimetry of the Polyelectrolyte/Water Interaction and Binding of Ca2+:Â Effects Determining the Quality of Polymeric Scale Inhibitors. Macromolecules, 2004, 37, 3444-3450.	2.2	166
167	Binding of Polymers to Calcite Crystals in Water:  Characterization by Isothermal Titration Calorimetry. Langmuir, 2003, 19, 6097-6103.	1.6	40
168	Domains in membranes and vesicles. Journal of Physics Condensed Matter, 2003, 15, S31-S45.	0.7	114
169	Polyampholyte-Dressed Micelles of Fluorinated and Hydrogenated Dodecanoic Acid. Langmuir, 2002, 18, 5099-5105.	1.6	26
170	Hyperviscous diblock copolymer vesicles. European Physical Journal E, 2002, 7, 241-250.	0.7	36
171	Title is missing!. European Physical Journal E, 2002, 7, 241-250.	0.7	103
172	Viscous drag of a solid sphere straddling a spherical or flat surface. Physics of Fluids, 2000, 12, 2711.	1.6	80
173	Drag of a Solid Particle Trapped in a Thin Film or at an Interface: Influence of Surface Viscosity and Elasticity. Journal of Colloid and Interface Science, 2000, 226, 35-43.	5.0	48
174	Pretransitional Effects in Dimyristoylphosphatidylcholine Vesicle Membranes: Optical Dynamometry Study. Biophysical Journal, 2000, 79, 340-356.	0.2	179
175	Shape transformations of giant unilamellar vesicles induced by ethanol and temperature variations. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 149, 201-205.	2.3	11
176	Falling ball viscosimetry of giant vesicle membranes: Finite-size effects. European Physical Journal B, 1999, 12, 589-598.	0.6	87
177	Film Trapping Technique:Â Precise Method for Three-Phase Contact Angle Determination of Solid and Fluid Particles of Micrometer Size. Langmuir, 1996, 12, 6665-6675.	1.6	90
178	The Hydration Repulsion between Charged Surfaces as an Interplay of Volume Exclusion and Dielectric Saturation Effects. Journal of Colloid and Interface Science, 1996, 182, 239-248.	5.0	91