
Hedong Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/42498/publications.pdf Version: 2024-02-01

HEDONICI

#	Article	IF	CITATIONS
1	Neuronal reprogramming in treating spinal cord injury. Neural Regeneration Research, 2022, 17, 1440.	3.0	21
2	Regeneration of Functional Neurons After Spinal Cord Injury via in situ NeuroD1-Mediated Astrocyte-to-Neuron Conversion. Frontiers in Cell and Developmental Biology, 2020, 8, 591883.	3.7	66
3	New Insights: MicroRNA Function in CNS Development and Psychiatric Diseases. Current Pharmacology Reports, 2018, 4, 132-144.	3.0	5
4	Huwe1 is a novel mediator of protection of neural progenitor L2.3 cells against oxygen‑glucose deprivation injury. Molecular Medicine Reports, 2018, 18, 4595-4602.	2.4	2
5	Dicer1 Ablation Impairs Responsiveness of Cerebellar Granule Neuron Precursors to Sonic Hedgehog and Disrupts Expression of Distinct Cell Cycle Regulator Genes. Cerebellum, 2017, 16, 450-461.	2.5	4
6	Olig2 regulates Purkinje cell generation in the early developing mouse cerebellum. Scientific Reports, 2016, 6, 30711.	3.3	43
7	InÂVivo Reprogramming for CNS Repair: Regenerating Neurons from Endogenous Glial Cells. Neuron, 2016, 91, 728-738.	8.1	131
8	An interneuron progenitor maintains neurogenic potential in vivo and differentiates into CABAergic interneurons after transplantation in the postnatal rat brain. Scientific Reports, 2016, 6, 19003.	3.3	4
9	Micro <scp>RNA</scp> â€mediated nonâ€cellâ€autonomous regulation of cortical radial glial transformation revealed by a <scp><i>Dicer1</i></scp> knockout mouse model. Glia, 2015, 63, 860-876.	4.9	20
10	Functional requirement of dicer1 and miRâ€17â€5p in reactive astrocyte proliferation after spinal cord injury in the mouse. Glia, 2014, 62, 2044-2060.	4.9	59
11	Dicer1 and MiRâ€9 are required for proper Notch1 signaling and the Bergmann glial phenotype in the developing mouse cerebellum. Glia, 2012, 60, 1734-1746.	4.9	37
12	MicroRNAs as potential therapeutics for treating spinal cord injury. Neural Regeneration Research, 2012, 7, 1352-9.	3.0	22
13	Neural progenitor diversity and their therapeutic potential for spinal cord repair. Frontiers in Biology, 2010, 5, 386-395.	0.7	3