Iwona Paprocka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4249090/publications.pdf Version: 2024-02-01

IWONA DADDOCKA

#	Article	IF	CITATIONS
1	The influence of printing parameters on selected mechanical properties of FDM/FFF 3D-printed parts. IOP Conference Series: Materials Science and Engineering, 2017, 227, 012033.	0.3	116
2	The model of maintenance planning and production scheduling for maximising robustness. International Journal of Production Research, 2019, 57, 4480-4501.	4.9	36
3	Discrete Event Simulation Method as a Tool for Improvement of Manufacturing Systems. Computers, 2017, 6, 10.	2.1	35
4	A hybrid multi-objective immune algorithm for predictive and reactive scheduling. Journal of Scheduling, 2017, 20, 165-182.	1.3	32
5	Estimation of Reliability Characteristics in a Production Scheduling Model with Failures and Time-Changing Parameters Described by Gamma and Exponential Distributions. Advanced Materials Research, 0, 837, 116-121.	0.3	22
6	A Production Scheduling Model with Maintenance. Advanced Materials Research, 2014, 1036, 885-890.	0.3	21
7	The Graph Representation of Multivariant and Complex Processes for Production Scheduling. Advanced Materials Research, 2013, 837, 422-427.	0.3	20
8	Robust Scheduling, a Production Scheduling Model of Failures. Applied Mechanics and Materials, 2013, 307, 443-446.	0.2	17
9	Predictive and Reactive Scheduling for a Critical Machine of a Production System. Advanced Materials Research, 0, 1036, 909-914.	0.3	12
10	Tensile tests of specimens made of selected group of the filament materials manufactured with FDM method. MATEC Web of Conferences, 2017, 112, 04017.	0.1	12
11	A Survey on Capp Systems Development Methods. Advanced Materials Research, 2013, 837, 387-392.	0.3	11
12	The Model of Discrete Production Scheduling System in UML Notation - Classes Diagrams. Advanced Materials Research, 0, 837, 416-421.	0.3	11
13	On Pareto Optimal Solution for Production and Maintenance Jobs Scheduling Problem in a Job Shop and Flow Shop with an Immune Algorithm. Advanced Materials Research, 2014, 1036, 875-880.	0.3	11
14	Predictive maintenance scheduling with reliability characteristics depending on the phase of the machine life cycle. Engineering Optimization, 2021, 53, 165-183.	1.5	11
15	Pareto Optimality of Production Schedules in the Stage of Populations Selection of the MOIA Immune Algorithm. Applied Mechanics and Materials, 2014, 657, 869-873.	0.2	10
16	Evaluation of the Effects of a Machine Failure on the Robustness of a Job Shop System—Proactive Approaches. Sustainability, 2019, 11, 65.	1.6	10
17	Application of Blockchain Technology in Production Scheduling and Management of Human Resources Competencies. Sensors, 2022, 22, 2844.	2.1	10
18	Sensitivity Analysis of Predictive Scheduling Algorithms. Advanced Materials Research, 2014, 1036, 921-926.	0.3	9

IWONA PAPROCKA

#	Article	IF	CITATIONS
19	Estimation of overall equipment effectiveness using simulation programme. IOP Conference Series: Materials Science and Engineering, 2015, 95, 012155.	0.3	9
20	Production planning and scheduling with material handling using modelling and simulation. MATEC Web of Conferences, 2017, 112, 09015.	0.1	9
21	Interaction of the Decision Maker in the Process of Production Scheduling. Advanced Materials Research, 2014, 1036, 830-833.	0.3	8
22	Integration of manufacturing operations management tools and discrete event simulation. IOP Conference Series: Materials Science and Engineering, 0, 400, 022037.	0.3	8
23	The Method of Production Scheduling with Uncertainties Using the Ants Colony Optimisation. Applied Sciences (Switzerland), 2021, 11, 171.	1.3	8
24	On Transient Queue-Size Distribution in a Single-Machine Production System with Breakdowns. Advanced Materials Research, 0, 1036, 505-510.	0.3	7
25	Time-series pattern recognition with an immune algorithm. IOP Conference Series: Materials Science and Engineering, 2015, 95, 012110.	0.3	7
26	The application of virtual reality systems as a support of digital manufacturing and logistics. IOP Conference Series: Materials Science and Engineering, 2016, 145, 042017.	0.3	7
27	The initial considerations and tests on the use of real time locating system in manufacturing processes improvement. IOP Conference Series: Materials Science and Engineering, 0, 400, 042013.	0.3	6
28	Model of Production System Evaluation with the Influence of FDM Machine Reliability and Process-Dependent Product Quality. Materials, 2021, 14, 5806.	1.3	6
29	UML Models of Design and Knowledge Representation for Technical Production Preparation Needs. Advanced Materials Research, 0, 837, 369-374.	0.3	5
30	Analytical Solution for Time-Dependent Queue-Size Behavior in the Manufacturing Line with Finite Buffer Capacity and Machine Setup and Closedown Times. Applied Mechanics and Materials, 2015, 809-810, 1360-1365.	0.2	5
31	Study on Transient Queueing Delay in a Single-Channel Queueing Model with Setup and Closedown Times. Communications in Computer and Information Science, 2016, , 464-475.	0.4	5
32	Integration of scheduling and discrete event simulation systems to improve production flow planning. IOP Conference Series: Materials Science and Engineering, 2016, 145, 022018.	0.3	5
33	Predictive Maintenance Scheduling with Failure Rate Described by Truncated Normal Distribution. Sensors, 2020, 20, 6787.	2.1	5
34	Analysis of Energy Efficient Scheduling of the Manufacturing Line with Finite Buffer Capacity and Machine Setup and Shutdown Times. Energies, 2021, 14, 7446.	1.6	5
35	The Procedure of Reaction to Unexpected Events in Scheduling of Manufacturing Systems with Discrete Production Flow. Advanced Materials Research, 2014, 1036, 840-845.	0.3	4
36	Location Selection and Size Estimation of Resource Buffers in the Critical Chain Project Management Method. Applied Mechanics and Materials, 0, 809-810, 1390-1395.	0.2	4

IWONA PAPROCKA

#	Article	IF	CITATIONS
37	A method of computer aided design with self-generative models in NX Siemens environment. IOP Conference Series: Materials Science and Engineering, 2015, 95, 012123.	0.3	4
38	Time-dependent solution for the manufacturing line with unreliable machine and batched arrivals. IOP Conference Series: Materials Science and Engineering, 2015, 95, 012094.	0.3	4
39	Production scheduling with discrete and renewable additional resources. IOP Conference Series: Materials Science and Engineering, 2015, 95, 012132.	0.3	4
40	The influence of algorithms for basic-schedule generation on the performance of predictive and reactive schedules. IOP Conference Series: Materials Science and Engineering, 0, 400, 022042.	0.3	4
41	A Predictive Approach for Disassembly Line Balancing Problems. Sensors, 2022, 22, 3920.	2.1	4
42	Multi-criteria evaluation methods in the production scheduling. IOP Conference Series: Materials Science and Engineering, 2016, 145, 022019.	0.3	3
43	Estimation of the resource buffers in the assembly process of a shearer machine in the CPPM method. MATEC Web of Conferences, 2017, 94, 06012.	0.1	3
44	A computer simulation as a tool for a production system analysis and optimization. IOP Conference Series: Materials Science and Engineering, 2018, 400, 022033.	0.3	3
45	Simulation model of robotic manufacturing line. , 0, , .		3
46	On Departure Process in a Production Model with Cyclic Working and Repair Periods. Advanced Materials Research, 0, 1036, 846-851.	0.3	2
47	On Effect of Model Parameters on Departure Process in a Production System with Failures. Advanced Materials Research, 2014, 1036, 927-932.	0.3	2
48	A survey on methods of design features identification. IOP Conference Series: Materials Science and Engineering, 2015, 95, 012120.	0.3	2
49	The role of the production scheduling system in rescheduling. IOP Conference Series: Materials Science and Engineering, 2015, 95, 012140.	0.3	2
50	Assessment of Production Capacity and Ability of Rapid Response to Changing Customer Expectations. Applied Mechanics and Materials, 0, 809-810, 1378-1383.	0.2	2
51	Application of case-based reasoning for machining parameters selection. IOP Conference Series: Materials Science and Engineering, 2016, 145, 042011.	0.3	2
52	Scheduling of an assembly process of a chosen technical mean using the critical chain approach. MATEC Web of Conferences, 2017, 94, 06015.	0.1	2
53	Algorithms of control parameters selection for automation of FDM 3D printing process. MATEC Web of Conferences, 2017, 112, 05011.	0.1	2
54	An attempt of CNC machining cycle's application as a tool of the design feature library elaboration. MATEC Web of Conferences, 2017, 112, 06019.	0.1	2

IWONA PAPROCKA

#	Article	IF	CITATIONS
55	Ant colony optimisation for scheduling of flexible job shop with multi-resources requirements. MATEC Web of Conferences, 2017, 112, 06018.	0.1	2
56	Production orders planning using additional backward pass scheduling approach. IOP Conference Series: Materials Science and Engineering, 0, 400, 062015.	0.3	2
57	Searching for a Method of Basic Schedules Generation Which Influences Over the Performance of Predictive and Reactive Schedules. Advances in Intelligent Systems and Computing, 2017, , 233-242.	0.5	2
58	An Attempt to Application of Chain Codes for Design Similarity Evaluation. Advanced Materials Research, 0, 1036, 897-902.	0.3	1
59	Scheduling Schemes Based on Searching the Aggregated Graph of Operations Planning Sequence. Applied Mechanics and Materials, 2015, 809-810, 1462-1467.	0.2	1
60	Robustness of Schedules Obtained Using the Tabu Search Algorithm Based on the Average Slack Method. Advances in Intelligent Systems and Computing, 2017, , 426-434.	0.5	1
61	On the Quality of Basic Schedules Influencing over the Performance of Predictive and Reactive Schedules. Advances in Intelligent Systems and Computing, 2017, , 243-253.	0.5	1
62	Distribution of time to buffer overflow in a finite-buffer manufacturing model with unreliable machine. MATEC Web of Conferences, 2017, 112, 05005.	0.1	1
63	A Methodology of CAPP/CAP Systems Integration Based on a Product Intermediate State Representation. Advanced Materials Research, 0, 1036, 915-920.	0.3	0
64	Transient State Analysis of Queue-Size Behavior and Throughput of the Manufacturing Line with Finite Buffer Capacity and Machine Setup and Closedown Times. Applied Mechanics and Materials, 0, 809-810, 1438-1443.	0.2	0
65	Parameters Tuning of an Immune Algorithm for Time-Series Pattern Recognition to Improve Ability to Escape from a Local Optimum and Achieve a Better Solution. Applied Mechanics and Materials, 2015, 791, 342-349.	0.2	0
66	Designing Complex Technical Means Using the Integrative Approach for Construction Optimization. Applied Mechanics and Materials, 2015, 791, 350-355.	0.2	0
67	The comparison of predictive scheduling algorithms for different sizes of job shop scheduling problems. IOP Conference Series: Materials Science and Engineering, 2016, 145, 042019.	0.3	0
68	Application of the Hybrid - Multi Objective Immune Algorithm for Obtaining the Robustness of Schedules. Advances in Intelligent Systems and Computing, 2017, , 445-453.	0.5	0
69	Schedule generation schemes for flexible manufacturing systems with additional resources. IOP Conference Series: Materials Science and Engineering, 0, 400, 062016.	0.3	0
70	The Kanban system for the assembly process of the model of a forklift. IOP Conference Series: Materials Science and Engineering, 2018, 400, 022043.	0.3	0
71	The design optimisation of the self-locking moving device using CAD software. IOP Conference Series: Materials Science and Engineering, 0, 400, 022034.	0.3	0