
Jose Ramon Lopez Lopez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4248913/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Voltageâ€dependent conformational changes of Kv1.3 channels activate cell proliferation. Journal of Cellular Physiology, 2021, 236, 4330-4347.	2.0	8
2	miR-126 contributes to the epigenetic signature of diabetic vascular smooth muscle and enhances antirestenosis effects of Kv1.3 blockers. Molecular Metabolism, 2021, 53, 101306.	3.0	4
3	Lipin-1-derived diacylglycerol activates intracellular TRPC3 which is critical for inflammatory signaling. Cellular and Molecular Life Sciences, 2021, 78, 8243-8260.	2.4	4
4	Elastin-like recombinamer-based devices releasing Kv1.3 blockers for the prevention of intimal hyperplasia: An in vitro and in vivo study. Acta Biomaterialia, 2020, 115, 264-274.	4.1	6
5	Kv1.3 blockade inhibits proliferation of vascular smooth muscle cells in vitro and intimal hyperplasia in vivo. Translational Research, 2020, 224, 40-54.	2.2	11
6	Kv1.3 Channel Inhibition Limits Uremia-Induced Calcification in Mouse and Human Vascular Smooth Muscle. Function, 2020, 2, zqaa036.	1.1	2
7	Myocardin-Dependent Kv1.5 Channel Expression Prevents Phenotypic Modulation of Human Vessels in Organ Culture. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, e273-e286.	1.1	8
8	The secret life of ion channels: Kv1.3 potassium channels and proliferation. American Journal of Physiology - Cell Physiology, 2018, 314, C27-C42.	2.1	63
9	Kv channels and vascular smooth muscle cell proliferation. Microcirculation, 2018, 25, e12427.	1.0	9
10	Voltage-Dependent Conformational Changes of KV1.3 Potassium Channels are an Essential Element for KV1.3-induced cell proliferation. Biophysical Journal, 2018, 114, 378a.	0.2	0
11	Phenotypic Modulation of Cultured Primary Human Aortic Vascular Smooth Muscle Cells by Uremic Serum. Frontiers in Physiology, 2018, 9, 89.	1.3	20
12	Differences in TRPC3 and TRPC6 channels assembly in mesenteric vascular smooth muscle cells in essential hypertension. Journal of Physiology, 2017, 595, 1497-1513.	1.3	31
13	Proliferative Role of Kv11 Channels in Murine Arteries. Frontiers in Physiology, 2017, 8, 500.	1.3	6
14	Voltage-Dependent Accessibility of Phosphorylation Sites at the Carboxy-Terminal Domain of Kv1.3 Channels Determines Kv1.3-Induced Cell Proliferation. Biophysical Journal, 2016, 110, 526a-527a.	0.2	0
15	Molecular Determinants of Kv1.3 Potassium Channels-induced Proliferation. Journal of Biological Chemistry, 2016, 291, 3569-3580.	1.6	43
16	Kv1.3 channels modulate human vascular smooth muscle cells proliferation independently of mTOR signaling pathway. Pflugers Archiv European Journal of Physiology, 2015, 467, 1711-1722.	1.3	33
17	Tungstate-Targeting of BKαβ1 Channels Tunes ERK Phosphorylation and Cell Proliferation in Human Vascular Smooth Muscle. PLoS ONE, 2015, 10, e0118148.	1.1	11
18	Cinnamaldehyde inhibits L-type calcium channels in mouse ventricular cardiomyocytes and vascular smooth muscle cells. Pflugers Archiv European Journal of Physiology, 2014, 466, 2089-2099.	1.3	30

#	Article	IF	CITATIONS
19	K+ Channels Expression in Hypertension After Arterial Injury, and Effect of Selective Kv1.3 Blockade with PAP-1 on Intimal Hyperplasia Formation. Cardiovascular Drugs and Therapy, 2014, 28, 501-511.	1.3	17
20	TRPA1 channels mediate acute neurogenic inflammation and pain produced by bacterial endotoxins. Nature Communications, 2014, 5, 3125.	5.8	361
21	Downâ€regulation of Ca _V 1.2 channels during hypertension: how fewer Ca _V 1.2 channels allow more Ca ²⁺ into hypertensive arterial smooth muscle. Journal of Physiology, 2013, 591, 6175-6191.	1.3	29
22	Kv1.3 Channels Can Modulate Cell Proliferation During Phenotypic Switch by an Ion-Flux Independent Mechanism. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 1299-1307.	1.1	68
23	High blood pressure associates with the remodelling of inward rectifier K ⁺ channels in mice mesenteric vascular smooth muscle cells. Journal of Physiology, 2012, 590, 6075-6091.	1.3	36
24	Characterization of Ion Channels Involved in the Proliferative Response of Femoral Artery Smooth Muscle Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 1203-1211.	1.1	53
25	Cell cycle-dependent expression of Kv3.4 channels modulates proliferation of human uterine artery smooth muscle cells. Cardiovascular Research, 2010, 86, 383-391.	1.8	24
26	MaxiK potassium channels in the function of chemoreceptor cells of the rat carotid body. American Journal of Physiology - Cell Physiology, 2009, 297, C715-C722.	2.1	20
27	<i>De novo</i> expression of Kv6.3 contributes to changes in vascular smooth muscle cell excitability in a hypertensive mice strain. Journal of Physiology, 2009, 587, 625-640.	1.3	45
28	Oxygen‣ensitive Potassium Channels in Chemoreceptor Cell Physiology. Annals of the New York Academy of Sciences, 2009, 1177, 82-88.	1.8	16
29	DPPX Modifies TEA Sensitivity of the Kv4 Channels in Rabbit Carotid Body Chemoreceptor Cells. Advances in Experimental Medicine and Biology, 2009, 648, 73-82.	0.8	0
30	The HERACLES Cardiovascular Network. Revista Espanola De Cardiologia (English Ed), 2008, 61, 66-75.	0.4	1
31	A Role for DPPX Modulating External TEA Sensitivity of Kv4 Channels. Journal of General Physiology, 2008, 131, 455-471.	0.9	6
32	An ASIC Channel for Acid Chemotransduction. Circulation Research, 2007, 101, 965-967.	2.0	7
33	Oxygen sensitive Kv channels in the carotid body. Respiratory Physiology and Neurobiology, 2007, 157, 65-74.	0.7	32
34	Differential modulation of Kv4.2 and Kv4.3 channels by calmodulin-dependent protein kinase II in rat cardiac myocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H1978-H1987.	1.5	45
35	Down regulation of Kv3.4 channels by chronic hypoxia increases acute oxygen sensitivity in rabbit carotid body. Journal of Physiology, 2005, 566, 395-408.	1.3	39
36	Comparative gene expression profile of mouse carotid body and adrenal medulla under physiological hypoxia. Journal of Physiology, 2005, 566, 491-503.	1.3	37

#	Article	IF	CITATIONS
37	Contribution of Kv Channels to Phenotypic Remodeling of Human Uterine Artery Smooth Muscle Cells. Circulation Research, 2005, 97, 1280-1287.	2.0	57
38	Characterization of the Kv channels of mouse carotid body chemoreceptor cells and their role in oxygen sensing. Journal of Physiology, 2004, 557, 457-471.	1.3	79
39	Ventilatory responses and carotid body function in adult rats perinatally exposed to hyperoxia. Journal of Physiology, 2004, 554, 126-144.	1.3	32
40	Molecular identification of Kvα subunits that contribute to the oxygenâ€sensitive K+current of chemoreceptor cells of the rabbit carotid body. Journal of Physiology, 2002, 542, 369-382.	1.3	76
41	O ₂ Modulates Large-Conductance Ca ²⁺ -Dependent K ⁺ Channels of Rat Chemoreceptor Cells by a Membrane-Restricted and CO-Sensitive Mechanism. Circulation Research, 2001, 89, 430-436.	2.0	148
42	Viral Gene Transfer of Dominant-Negative Kv4 Construct Suppresses an O ₂ -Sensitive K ⁺ Current in Chemoreceptor Cells. Journal of Neuroscience, 2000, 20, 5689-5695.	1.7	48
43	Are Kv Channels the Essence of O ₂ Sensing?. Circulation Research, 2000, 86, 490-491.	2.0	21
44	Kvβ1.2 Subunit Coexpression in HEK293 Cells Confers O2 Sensitivity to Kv4.2 but not to Shaker Channels. Journal of General Physiology, 1999, 113, 897-907.	0.9	150
45	Effects of Almitrine Bismesylate on the Ionic Currents of Chemoreceptor Cells from the Carotid Body. Molecular Pharmacology, 1998, 53, 330-339.	1.0	16
46	Properties of ionic currents from isolated adult rat carotid body chemoreceptor cells: effect of hypoxia Journal of Physiology, 1997, 499, 429-441.	1.3	76
47	Carbon monoxide inhibits hypoxic pulmonary vasoconstriction in rats by a cGMP-independent mechanism. Pflugers Archiv European Journal of Physiology, 1997, 434, 698-704.	1.3	38
48	Intracellular Ca2+ Deposits and Catecholamine Secretion by Chemoreceptor Cells of the Rabbit Carotid Body. Advances in Experimental Medicine and Biology, 1996, 410, 279-284.	0.8	1
49	Cellular mechanisms of oxygen chemoreception in the carotid body. Respiration Physiology, 1995, 102, 137-147.	2.8	45
50	Local, stochastic release of Ca2+ in voltage lamped rat heart cells: visualization with confocal microscopy Journal of Physiology, 1994, 480, 21-29.	1.3	153
51	Local control of excitationâ€contraction coupling in rat heart cells Journal of Physiology, 1994, 474, 463-471.	1.3	248
52	Inhibition of [3H]catecholamine release and Ca2+ currents by prostaglandin E2 in rabbit carotid body chemoreceptor cells Journal of Physiology, 1994, 476, 269-277.	1.3	18
53	Properties of a transient K+ current in chemoreceptor cells of rabbit carotid body Journal of Physiology, 1993, 460, 15-32.	1.3	77
54	Time course of K+current inhibition by low oxygen in chemoreceptor cells of adult rabbit carotid body Effects of carbon monoxide. FEBS Letters, 1992, 299, 251-254.	1.3	74

#	Article	IF	CITATIONS
55	Release of dopamine and chemoreceptor discharge induced by low pH and high PCO2 stimulation of the cat carotid body Journal of Physiology, 1991, 433, 519-531.	1.3	64
56	Low pO2 selectively inhibits K channel activity in chemoreceptor cells of the mammalian carotid body Journal of General Physiology, 1989, 93, 1001-1015.	0.9	191
57	lonic currents in dispersed chemoreceptor cells of the mammalian carotid body Journal of General Physiology, 1989, 93, 979-999.	0.9	98
58	Chemotransduction in the carotid body: K+ current modulated by PO2 in type I chemoreceptor cells. Science, 1988, 241, 580-582.	6.0	519