Cristina Carvalho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/424836/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Doxorubicin: The Good, the Bad and the Ugly Effect. Current Medicinal Chemistry, 2009, 16, 3267-3285.	1.2	1,042
2	Mitochondrial dysfunction is a trigger of Alzheimer's disease pathophysiology. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2010, 1802, 2-10.	1.8	587
3	Insulin signaling, glucose metabolism and mitochondria: Major players in Alzheimer's disease and diabetes interrelation. Brain Research, 2012, 1441, 64-78.	1.1	164
4	Metabolic Alterations Induced by Sucrose Intake and Alzheimer's Disease Promote Similar Brain Mitochondrial Abnormalities. Diabetes, 2012, 61, 1234-1242.	0.3	129
5	Oxidative Stress: A Major Player in Cerebrovascular Alterations Associated to Neurodegenerative Events. Frontiers in Physiology, 2018, 9, 806.	1.3	126
6	Insulin is a Two-Edged Knife on the Brain. Journal of Alzheimer's Disease, 2009, 18, 483-507.	1.2	124
7	Crosstalk between diabetes and brain: Clucagon-like peptide-1 mimetics as a promising therapy against neurodegeneration. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 527-541.	1.8	113
8	Alzheimer's disease and type 2 diabetes-related alterations in brain mitochondria, autophagy and synaptic markers. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 1665-1675.	1.8	112
9	Metformin Protects the Brain Against the Oxidative Imbalance Promoted by Type 2 Diabetes. Medicinal Chemistry, 2008, 4, 358-364.	0.7	96
10	The role of endoplasmic reticulum in amyloid precursor protein processing and trafficking: Implications for Alzheimer's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 1444-1453.	1.8	95
11	Mechanisms of Action of Metformin in Type 2 Diabetes and Associated Complications: An Overview. Mini-Reviews in Medicinal Chemistry, 2008, 8, 1343-1354.	1.1	85
12	Metformin promotes isolated rat liver mitochondria impairment. Molecular and Cellular Biochemistry, 2008, 308, 75-83.	1.4	82
13	Insulin-induced recurrent hypoglycemia exacerbates diabetic brain mitochondrial dysfunction and oxidative imbalance. Neurobiology of Disease, 2013, 49, 1-12.	2.1	76
14	Type 2 Diabetic and Alzheimer's Disease Mice Present Similar Behavioral, Cognitive, and Vascular Anomalies. Journal of Alzheimer's Disease, 2013, 35, 623-635.	1.2	68
15	Doxorubicin increases the susceptibility of brain mitochondria to Ca2+-induced permeability transition and oxidative damage. Free Radical Biology and Medicine, 2008, 45, 1395-1402.	1.3	64
16	Role of mitochondrial-mediated signaling pathways in Alzheimer disease and hypoxia. Journal of Bioenergetics and Biomembranes, 2009, 41, 433-440.	1.0	63
17	Gut-brain connection: The neuroprotective effects of the anti-diabetic drug liraglutide. World Journal of Diabetes, 2015, 6, 807.	1.3	62
18	Insulin therapy modulates mitochondrial dynamics and biogenesis, autophagy and tau protein phosphorylation in the brain of type 1 diabetic rats. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 1154-1166.	1.8	60

CRISTINA CARVALHO

#	Article	IF	CITATIONS
19	Effects of Estrogen in the Brain: Is it a Neuroprotective Agent in Alzheimers Disease?. Current Aging Science, 2010, 3, 113-126.	0.4	59
20	The impairment of insulin signaling in Alzheimer's disease. IUBMB Life, 2012, 64, 951-957.	1.5	56
21	Brain GLP-1/IGF-1 Signaling and Autophagy Mediate Exendin-4 Protection Against Apoptosis in Type 2 Diabetic Rats. Molecular Neurobiology, 2018, 55, 4030-4050.	1.9	55
22	Alzheimer's Disease: From Mitochondrial Perturbations to Mitochondrial Medicine. Brain Pathology, 2016, 26, 632-647.	2.1	53
23	The role of mitochondrial disturbances in Alzheimer, Parkinson and Huntington diseases. Expert Review of Neurotherapeutics, 2015, 15, 867-884.	1.4	39
24	Effects of rapamycin and TOR on aging and memory: implications for Alzheimer's disease. Journal of Neurochemistry, 2011, 117, 927-936.	2.1	38
25	Increased Susceptibility to Amyloid-β Toxicity in Rat Brain Microvascular Endothelial Cells under Hyperglycemic Conditions. Journal of Alzheimer's Disease, 2013, 38, 75-83.	1.2	37
26	Effects of methylglyoxal and pyridoxamine in rat brain mitochondria bioenergetics and oxidative status. Journal of Bioenergetics and Biomembranes, 2014, 46, 347-355.	1.0	33
27	Perspectives on mitochondrial uncoupling proteins-mediated neuroprotection. Journal of Bioenergetics and Biomembranes, 2015, 47, 119-131.	1.0	33
28	Mitochondrial quality control systems sustain brain mitochondrial bioenergetics in early stages of type 2 diabetes. Molecular and Cellular Biochemistry, 2014, 394, 13-22.	1.4	31
29	Phosphatase 2A Inhibition Affects Endoplasmic Reticulum and Mitochondria Homeostasis Via Cytoskeletal Alterations in Brain Endothelial Cells. Molecular Neurobiology, 2017, 54, 154-168.	1.9	31
30	Alzheimer disease as a vascular disorder: Where do mitochondria fit?. Experimental Gerontology, 2012, 47, 878-886.	1.2	30
31	Mitochondrial preconditioning: a potential neuroprotective strategy. Frontiers in Aging Neuroscience, 2010, 2, .	1.7	29
32	Impact of STZâ€induced hyperglycemia and insulinâ€induced hypoglycemia in plasma amino acids and cortical synaptosomal neurotransmitters. Synapse, 2011, 65, 457-466.	0.6	29
33	New Insights into the Mechanisms of Mitochondrial Preconditioning-Triggered Neuroprotection. Current Pharmaceutical Design, 2011, 17, 3381-3389.	0.9	28
34	Middle-Aged Diabetic Females and Males Present Distinct Susceptibility to Alzheimer Disease-like Pathology. Molecular Neurobiology, 2017, 54, 6471-6489.	1.9	27
35	Mitophagy in Neurodegeneration: An Opportunity for Therapy?. Current Drug Targets, 2011, 12, 790-799.	1.0	26
36	Diabetes–Alzheimer's Disease Link: Targeting Mitochondrial Dysfunction and Redox Imbalance. Antioxidants and Redox Signaling, 2021, 34, 631-649.	2.5	24

CRISTINA CARVALHO

#	Article	IF	CITATIONS
37	Defective HIF Signaling Pathway and Brain Response to Hypoxia in Neurodegenerative Diseases: Not an "lffy―Question!. Current Pharmaceutical Design, 2013, 19, 6809-6822.	0.9	23
38	Modulation of Endoplasmic Reticulum Stress: An Opportunity to Prevent Neurodegeneration?. CNS and Neurological Disorders - Drug Targets, 2015, 14, 518-533.	0.8	23
39	Mitochondria in Alzheimer's Disease and Diabetes-Associated Neurodegeneration: License to Heal!. Handbook of Experimental Pharmacology, 2017, 240, 281-308.	0.9	22
40	Hyperglycemia, Hypoglycemia and Dementia: Role of Mitochondria and Uncoupling Proteins. Current Molecular Medicine, 2013, 13, 586-601.	0.6	21
41	Targeting Autophagy in the Brain: A Promising Approach?. Central Nervous System Agents in Medicinal Chemistry, 2010, 10, 158-168.	0.5	19
42	Cerebrovascular and mitochondrial abnormalities in Alzheimer's disease: a brief overview. Journal of Neural Transmission, 2016, 123, 107-111.	1.4	14
43	Chronic Hypoxia Potentiates Age-Related Oxidative Imbalance in Brain Vessels and Synaptosomes. Current Neurovascular Research, 2010, 7, 288-300.	0.4	14
44	Oxidative stress mediates apoptotic effects of ascorbate and dehydroascorbate in human Myelodysplasia cells in vitro. Toxicology in Vitro, 2013, 27, 1542-1549.	1.1	13
45	Food Deprivation Promotes Oxidative Imbalance in Rat Brain. Journal of Food Science, 2009, 74, H8-H14.	1.5	10
46	Type 2 Diabetes Aggravates Alzheimer's Disease-Associated Vascular Alterations of the Aorta in Mice. Journal of Alzheimer's Disease, 2015, 45, 127-138.	1.2	10
47	Retina and Brain Display Early and Differential Molecular and Cellular Changes in the 3xTg-AD Mouse Model of Alzheimer's Disease. Molecular Neurobiology, 2021, 58, 3043-3060.	1.9	10
48	Insulin and Insulin-Sensitizing Drugs in Neurodegeneration: Mitochondria as Therapeutic Targets. Pharmaceuticals, 2009, 2, 250-286.	1.7	9
49	Vascular, Oxidative, and Synaptosomal Abnormalities During Aging and the Progression of Type 2 Diabetes. Current Neurovascular Research, 2014, 11, 330-339.	0.4	9
50	Tortuous Paths of Insulin Signaling and Mitochondria in Alzheimer's Disease. Advances in Experimental Medicine and Biology, 2019, 1128, 161-183.	0.8	5
51	Post-translational modifications in brain health and disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 1947-1948.	1.8	4
52	WWOX: A New Therapeutic Target In Type 2 Diabetes-Associated Neurodegeneration. Metabolism: Clinical and Experimental, 2021, 116, 154616.	1.5	1
53	Cognitive Impairment in Obesity and Diabetes. , 2020, , 399-414.		1
54	Association of Mitochondrial Signaling in Alzheimer's Disease and Hypoxia. , 2011, , 50-61.		0

4

#	Article	IF	CITATIONS
55	Isolation of Rodent Brain Vessels. Bio-protocol, 2017, 7, e2535.	0.2	0