Jose L Garcia-Cordero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4248121/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stand-alone self-powered integrated microfluidic blood analysis system (SIMBAS). Lab on A Chip, 2011, 11, 845-850.	6.0	304
2	LSPR Chip for Parallel, Rapid, and Sensitive Detection of Cancer Markers in Serum. Nano Letters, 2014, 14, 2636-2641.	9.1	262
3	3D-printing of transparent bio-microfluidic devices in PEG-DA. Lab on A Chip, 2016, 16, 2287-2294.	6.0	216
4	Integrated microfluidic tmRNA purification and real-time NASBA device for molecular diagnostics. Lab on A Chip, 2008, 8, 2071.	6.0	135
5	Sessile droplets for chemical and biological assays. Lab on A Chip, 2017, 17, 2150-2166.	6.0	108
6	Optically addressable single-use microfluidic valves by laser printer lithography. Lab on A Chip, 2010, 10, 2680.	6.0	93
7	Microfluidic systems for cancer diagnostics. Current Opinion in Biotechnology, 2020, 65, 37-44.	6.6	71
8	Evaporation-Driven Bioassays in Suspended Droplets. Analytical Chemistry, 2016, 88, 7312-7317.	6.5	57
9	A high-throughput multiplexed microfluidic device for COVID-19 serology assays. Lab on A Chip, 2021, 21, 93-104.	6.0	53
10	An Affordable and Portable Thermocycler for Real-Time PCR Made of 3D-Printed Parts and Off-the-Shelf Electronics. Analytical Chemistry, 2018, 90, 5563-5568.	6.5	50
11	A high-throughput nanoimmunoassay chip applied to large-scale vaccine adjuvant screening. Integrative Biology (United Kingdom), 2013, 5, 650-658.	1.3	46
12	A 1024-sample serum analyzer chip for cancer diagnostics. Lab on A Chip, 2014, 14, 2642-2650.	6.0	44
13	Automated Droplet-Based Microfluidic Platform for Multiplexed Analysis of Biochemical Markers in Small Volumes. Analytical Chemistry, 2019, 91, 5133-5141.	6.5	37
14	Microfluidic sedimentation cytometer for milk quality and bovine mastitis monitoring. Biomedical Microdevices, 2010, 12, 1051-1059.	2.8	35
15	A Microfluidic Platform for High-Throughput Multiplexed Protein Quantitation. PLoS ONE, 2015, 10, e0117744.	2.5	35
16	Liquid recirculation in microfluidic channels by the interplay of capillary and centrifugal forces. Microfluidics and Nanofluidics, 2010, 9, 695-703.	2.2	27
17	Facile assembly of an affordable miniature multicolor fluorescence microscope made of 3D-printed parts enables detection of single cells. PLoS ONE, 2019, 14, e0215114.	2.5	27
18	Pressure-actuated monolithic acrylic microfluidic valves and pumps. Lab on A Chip, 2018, 18, 662-669.	6.0	23

#	Article	IF	CITATIONS
19	Dynamic Generation of Concentration- and Temporal-Dependent Chemical Signals in an Integrated Microfluidic Device for Single-Cell Analysis. Analytical Chemistry, 2018, 90, 8331-8336.	6.5	23
20	Multiplexed surface micropatterning of proteins with a pressure-modulated microfluidic button-membrane. Chemical Communications, 2013, 49, 1264-1266.	4.1	22
21	Integrated Microfluidic Device for Functional Secretory Immunophenotyping of Immune Cells. ACS Sensors, 2020, 5, 353-361.	7.8	22
22	A low-cost 3-D printed stethoscope connected to a smartphone. , 2016, 2016, 4365-4368.		21
23	Massive Parallel Analysis of Single Cells in an Integrated Microfluidic Platform. Analytical Chemistry, 2017, 89, 5210-5220.	6.5	21
24	Mechanically Induced Trapping of Molecular Interactions and Its Applications. Journal of the Association for Laboratory Automation, 2016, 21, 356-367.	2.8	16
25	Waste-to-energy conversion from a microfluidic device. Journal of Power Sources, 2017, 360, 80-86.	7.8	11
26	Low-Cost Microfluidic Single-Use Valves and On-Board Reagent Storage using Laser-Printer Technology. , 2009, , .		7
27	A versatile microfluidic device for multiple ex vivo/in vitro tissue assays unrestrained from tissue topography. Microsystems and Nanoengineering, 2020, 6, 40.	7.0	7
28	Myo1g is required for efficient adhesion and migration of activated B lymphocytes to inguinal lymph nodes. Scientific Reports, 2021, 11, 7197.	3.3	7
29	An affordable 3D-printed positioner fixture improves the resolution of conventional milling for easy prototyping of acrylic microfluidic devices. Lab on A Chip, 2020, 20, 3179-3186.	6.0	6
30	Liquid refractive index measured through a refractometer based on diffraction gratings. Optics Express, 2019, 27, 34705.	3.4	6
31	Lab-on-a-Chip (General Philosophy). , 2008, , 962-969.		4
32	Simple scaling laws for the evaporation of droplets pinned on pillars: Transfer-rate- and diffusion-limited regimes. Physical Review E, 2017, 96, 062803.	2.1	3
33	Liquid recirculation in microfluidic channels by the interplay of capillary and centrifugal forces. , 2009, , .		1
34	Monolithic Centrifugal Microfluidic Platform for Bacteria Capture and Concentration, Lysis, Nucleic-Acid Amplification, and Real-Time Detection. , 2009, , .		1
35	A Microfluidic System Combining Valve Automation and Spheroid Cultures to Characterize Hepatic Glucose Metabolism During Hormonal Stimulation. , 2019, , .		1
36	Birefringent optofluidic gratings. Optics Express, 2020, 28, 31729.	3.4	1

#	Article	IF	CITATIONS
37	Lab-on-a-Chip (General Philosophy). , 2015, , 1501-1511.		0
38	Optofluidic gratings used in refractometers. , 2020, , .		0
39	Microfluidic tools to study cell migration. , 2022, , 273-293.		0