Erzheng Su

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4248041/publications.pdf

Version: 2024-02-01

257101 223531 2,568 93 24 46 citations h-index g-index papers 96 96 96 2666 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Well-Designed Hydrophobic Deep Eutectic Solvents As Green and Efficient Media for the Extraction of Artemisinin from <i>Artemisia annua</i> Leaves. ACS Sustainable Chemistry and Engineering, 2017, 5, 3270-3278.	3.2	192
2	Tailor-made hydrophobic deep eutectic solvents for cleaner extraction of polyprenyl acetates from Ginkgo biloba leaves. Journal of Cleaner Production, 2017, 152, 399-405.	4.6	132
3	Two-phase systems developed with hydrophilic and hydrophobic deep eutectic solvents for simultaneously extracting various bioactive compounds with different polarities. Green Chemistry, 2018, 20, 1879-1886.	4.6	127
4	Hydrophobic deep eutectic solvents: the new generation of green solvents for diversified and colorful applications in green chemistry. Journal of Cleaner Production, 2021, 314, 127965.	4.6	125
5	Significantly improving the solubility of non-steroidal anti-inflammatory drugs in deep eutectic solvents for potential non-aqueous liquid administration. MedChemComm, 2016, 7, 955-959.	3.5	110
6	Encapsulation of flavonoids in liposomal delivery systems: the case of quercetin, kaempferol and luteolin. Food and Function, 2017, 8, 3198-3208.	2.1	107
7	Efficient extraction of proanthocyanidin from Ginkgo biloba leaves employing rationally designed deep eutectic solvent-water mixture and evaluation of the antioxidant activity. Journal of Pharmaceutical and Biomedical Analysis, 2018, 158, 317-326.	1.4	101
8	Lipase-catalyzed irreversible transesterification of vegetable oils for fatty acid methyl esters production with dimethyl carbonate as the acyl acceptor. Biochemical Engineering Journal, 2007, 36, 167-173.	1.8	100
9	Immobilization of \hat{l}^2 -glucosidase and its aroma-increasing effect on tea beverage. Food and Bioproducts Processing, 2010, 88, 83-89.	1.8	85
10	In situ lipase-catalyzed reactive extraction of oilseeds with short-chained dialkyl carbonates for biodiesel production. Bioresource Technology, 2009, 100, 5813-5817.	4.8	80
11	Improvement in lipase-catalyzed methanolysis of triacylglycerols for biodiesel production using a solvent engineering method. Journal of Molecular Catalysis B: Enzymatic, 2008, 55, 118-125.	1.8	63
12	Development of recombinant Escherichia coli whole-cell biocatalyst expressing a novel alkaline lipase-coding gene from Proteus sp. for biodiesel production. Journal of Biotechnology, 2009, 139, 169-175.	1.9	56
13	Solubility improvement of phytochemicals using (natural) deep eutectic solvents and their bioactivity evaluation. Journal of Molecular Liquids, 2020, 318, 113997.	2.3	48
14	Efficient saccharification of agave biomass using Aspergillus niger produced low-cost enzyme cocktail with hyperactive pectinase activity. Bioresource Technology, 2019, 272, 26-33.	4.8	42
15	Improvement of Animal Feed Additives of Ginkgo Leaves through Solid-state Fermentation using <i>Aspergillus niger</i> . International Journal of Biological Sciences, 2018, 14, 736-747.	2.6	41
16	Improving Flavonoid Extraction from Ginkgo biloba Leaves by Prefermentation Processing. Journal of Agricultural and Food Chemistry, 2013, 61, 5783-5791.	2.4	40
17	Lipase-catalyzed in situ reactive extraction of oilseeds with short-chained alkyl acetates for fatty acid esters production. Journal of Molecular Catalysis B: Enzymatic, 2007, 48, 28-32.	1.8	39
18	Improvement in biodiesel production from soapstock oil by one-stage lipase catalyzed methanolysis. Energy Conversion and Management, 2014, 88, 60-65.	4.4	38

#	Article	IF	CITATIONS
19	Efficient Extraction of Bioactive Flavonoids from Ginkgo biloba Leaves Using Deep Eutectic Solvent/Water Mixture as Green Media. Chemical and Biochemical Engineering Quarterly, 2018, 32, 315-324.	0.5	36
20	Tailor-Made Deep Eutectic Solvents for Simultaneous Extraction of Five Aromatic Acids from Ginkgo biloba Leaves. Molecules, 2018, 23, 3214.	1.7	36
21	Current advances in the biosynthesis of hyaluronic acid with variable molecular weights. Carbohydrate Polymers, 2021, 269, 118320.	5.1	36
22	Deep eutectic solvents as green media for efficient extraction of terpene trilactones from <i>Ginkgo biloba</i> leaves. Journal of Liquid Chromatography and Related Technologies, 2017, 40, 385-391.	0.5	31
23	Combined cross-linked enzyme aggregates (combi-CLEAs) for efficient integration of a ketoreductase and a cofactor regeneration system. Journal of Biotechnology, 2014, 184, 7-10.	1.9	30
24	Magnetic combined cross-linked enzyme aggregates (Combi-CLEAs) for cofactor regeneration in the synthesis of chiral alcohol. Journal of Biotechnology, 2018, 271, 1-7.	1.9	30
25	Cloning, overexpression and characterization of a thermostable \hat{I}^2 -xylosidase from Thermotoga petrophila and cooperated transformation of ginsenoside extract to ginsenoside 20(S)-Rg3 with a \hat{I}^2 -glucosidase. Bioorganic Chemistry, 2019, 85, 159-167.	2.0	26
26	Improving the catalytic activity of lipase LipK107 from Proteus sp. by site-directed mutagenesis in the lid domain based on computer simulation. Journal of Molecular Catalysis B: Enzymatic, 2011, 68, 286-291.	1.8	25
27	Delignification overmatches hemicellulose removal for improving hydrolysis of wheat straw using the enzyme cocktail from Aspergillus niger. Bioresource Technology, 2019, 274, 459-467.	4.8	25
28	Carica papaya lipase-catalyzed synthesis of terpene esters. Journal of Molecular Catalysis B: Enzymatic, 2011, 71, 152-158.	1.8	24
29	A new fermentation strategy for S-adenosylmethionine production in recombinant Pichia pastoris. Biochemical Engineering Journal, 2008, 41, 74-78.	1.8	23
30	Efficient removal of ginkgolic acids from Ginkgo biloba leaves crude extract by using hydrophobic deep eutectic solvents. Industrial Crops and Products, 2021, 166, 113462.	2.5	23
31	Purification and In Situ Immobilization of Papain with Aqueous Two-Phase System. PLoS ONE, 2010, 5, e15168.	1.1	22
32	Effective Release of Intracellular Enzymes by Permeating the Cell Membrane with Hydrophobic Deep Eutectic Solvents. ChemBioChem, 2020, 21, 672-680.	1.3	22
33	Removal of ginkgotoxin from the Ginkgo biloba seeds powder by adopting membrane separation technology. Journal of Cleaner Production, 2021, 280, 124452.	4.6	22
34	The recent development of nanozymes for food quality and safety detection. Journal of Materials Chemistry B, 2022, 10, 1359-1368.	2.9	22
35	Submerged fermentation of <scp><i>Ginkgo biloba</i></scp> seed powder using <scp><i>Eurotium cristatum</i></scp> for the development of ginkgo seeds fermented products. Journal of the Science of Food and Agriculture, 2021, 101, 1782-1791.	1.7	21
36	Alcaligenes faecalis penicillin G acylase-catalyzed enantioselective acylation of dl-phenylalanine and derivatives in aqueous medium. Tetrahedron Letters, 2011, 52, 5398-5402.	0.7	20

#	Article	IF	Citations
37	Inactivation of Bacteria by Electric Current in the Presence of Carbon Nanotubes Embedded Within a Polymeric Membrane. Applied Biochemistry and Biotechnology, 2015, 175, 666-676.	1.4	20
38	High yield synthesis of d-phenylglycine and its derivatives by nitrilase mediated dynamic kinetic resolution in aqueous-1-octanol biphasic system. Tetrahedron Letters, 2014, 55, 1448-1451.	0.7	19
39	One-pot enzymatic production of deacetyl-7-aminocephalosporanic acid from cephalosporin C via immobilized cephalosporin C acylase and deacetylase. Biochemical Engineering Journal, 2015, 95, 1-8.	1.8	17
40	<i>Carica papaya</i> Lipase Catalysed Resolution of βâ€Amino Esters for the Highly Enantioselective Synthesis of (<i>S</i>)â€Dapoxetine. European Journal of Organic Chemistry, 2013, 2013, 557-565.	1.2	16
41	Cyclodextrin glucosyltransferase immobilization on polydopamine-coated Fe3O4 nanoparticles in the presence of polyethyleneimine for efficient \hat{l}^2 -cyclodextrin production. Biochemical Engineering Journal, 2019, 150, 107264.	1.8	16
42	The effects of angiotensin I-converting enzyme inhibitory peptide VGINYW and the hydrolysate of α-lactalbumin on blood pressure, oxidative stress and gut microbiota of spontaneously hypertensive rats. Food and Function, 2022, 13, 2743-2755.	2.1	16
43	Characterization and identification of three novel aldo–keto reductases from Lodderomyces elongisporus for reducing ethyl 4-chloroacetoacetate. Archives of Biochemistry and Biophysics, 2014, 564, 219-228.	1.4	15
44	Cloning, Overexpression, and Characterization of a High Enantioselective Nitrilase from Sphingomonas wittichii RW1 for Asymmetric Synthesis of (R)-Phenylglycine. Applied Biochemistry and Biotechnology, 2014, 173, 365-377.	1.4	15
45	Efficient cascade synthesis of ampicillin from penicillin G potassium salt using wild and mutant penicillin G acylase from Alcaligenes faecalis. Journal of Biotechnology, 2016, 219, 142-148.	1.9	15
46	Enzymes in nearly anhydrous deep eutectic solvents: Insight into the biocompatibility and thermal stability. Enzyme and Microbial Technology, 2022, 157, 110022.	1.6	15
47	Immobilization and Characterization of Tannase and its Haze-removing. Food Science and Technology International, 2009, 15, 545-552.	1.1	14
48	Lipaseâ€Catalyzed Irreversible Transesterification of <i>Jatropha Curcas</i> L. Seed Oil to Fatty Acid Esters: An Optimization Study. JAOCS, Journal of the American Oil Chemists' Society, 2011, 88, 793-800.	0.8	14
49	Efficient hydration of 2-amino-2,3-dimethylbutyronitrile to 2-amino-2,3-dimethylbutyramide in a biphasic system via an easily prepared whole-cell biocatalyst. Green Chemistry, 2015, 17, 3992-3999.	4.6	14
50	Efficient enzymatic synthesis of ampicillin using mutant Penicillin G acylase with bio-based solvent glycerol. Catalysis Communications, 2016, 79, 31-34.	1.6	14
51	High-level expression of glutaryl-7-aminocephalosporanic acid acylase from Pseudomonas diminuta NK703 in Escherichia coli by combined optimization strategies. Journal of Biotechnology, 2013, 168, 607-615.	1.9	13
52	Production of Fatty Acid Butyl Esters Using the Low Cost Naturally Immobilized <i>Carica papaya</i> Lipase. Journal of Agricultural and Food Chemistry, 2014, 62, 6375-6381.	2.4	13
53	Synthesis of (S)-3-chloro-1-phenylpropanol by permeabilized recombinant Escherichia coli harboring Saccharomyces cerevisiae YOL151W reductase in 2-methyltetrahydrofuran cosolvent system. Catalysis Communications, 2017, 97, 56-59.	1.6	13
54	Insight into the transformation of 4'-O-methylpyridoxine and 4'-O-methylpyridoxine-5'-glucoside in Ginkgo biloba seeds undergoing the heat treatment. Industrial Crops and Products, 2019, 140, 111622.	2.5	13

#	Article	IF	CITATIONS
55	Recent Strategies for the Biosynthesis of Ergothioneine. Journal of Agricultural and Food Chemistry, 2021, 69, 13682-13690.	2.4	13
56	How to improve the efficiency of biocatalysis in non-aqueous pure deep eutectic solvents: A case study on the lipase-catalyzed transesterification reaction. Biochemical Engineering Journal, 2022, 179, 108336.	1.8	13
57	In vitro-in silico screening strategy and mechanism of angiotensin l-converting enzyme inhibitory peptides from α-lactalbumin. LWT - Food Science and Technology, 2022, 156, 112984.	2.5	13
58	In vivo functional expression of a screened P. aeruginosa chaperone-dependent lipase in E. coli. BMC Biotechnology, 2012, 12, 58.	1.7	12
59	Characterization of a nitrilase from Arthrobacter aurescens CYC705 for synthesis of iminodiacetic acid. Journal of General and Applied Microbiology, 2014, 60, 207-214.	0.4	12
60	High-level soluble and functional expression of Trigonopsis variabilis d-amino acid oxidase in Escherichia coli. Bioprocess and Biosystems Engineering, 2014, 37, 1517-1526.	1.7	12
61	Efficient asymmetric synthesis of d-N-formyl-phenylglycine via cross-linked nitrilase aggregates catalyzed dynamic kinetic resolution. Catalysis Communications, 2014, 51, 19-23.	1.6	12
62	Efficient enzymatic synthesis of ampicillin by mutant Alcaligenes faecalis penicillin G acylase. Journal of Biotechnology, 2015, 199, 62-68.	1.9	12
63	Phenanthrene biodegradation by an indigenousPseudomonas sp. ZJF08 with TX100 as surfactant. Annals of Microbiology, 2008, 58, 439-442.	1.1	11
64	Ginkgo biloba seed exocarp: A waste resource with abundant active substances and other components for potential applications. Food Research International, 2022, 160, 111637.	2.9	11
65	Low-Transition-Temperature Mixtures (LTTMs) for Dissolving Proteins and for Drug Formulation. Applied Biochemistry and Biotechnology, 2015, 177, 753-758.	1.4	10
66	High-level soluble expression of Serratia marcescens H30 lipase in Escherichia coli. Biotechnology and Applied Biochemistry, 2015, 62, 79-86.	1.4	10
67	Study on Synergistic Antioxidant Effect of Typical Functional Components of Hydroethanolic Leaf Extract from Ginkgo Biloba In Vitro. Molecules, 2022, 27, 439.	1.7	10
68	Disparity in productive binding mode of the slow-reacting enantiomer determines the novel catalytic behavior of Candida antarctica lipase B. Journal of Molecular Catalysis B: Enzymatic, 2010, 62, 288-296.	1.8	9
69	Functional expression of Serratia marcescens H30 lipase in Escherichia coli for efficient kinetic resolution of racemic alcohols in organic solvents. Journal of Molecular Catalysis B: Enzymatic, 2014, 106, 11-16.	1.8	9
70	Synthesis of Isorhamnetin-3-O-Rhamnoside by a Three-Enzyme (Rhamnosyltransferase, Glycine Max) Tj ETQq0 0 0 Molecules, 2019, 24, 3042.	rgBT /Ove 1.7	rlock 10 Tf 9
71	Efficient production of aggregation prone 4-α-glucanotransferase by combined use of molecular chaperones and chemical chaperones in Escherichia coli. Journal of Biotechnology, 2019, 292, 68-75.	1.9	9
72	Ginkgo Seed Proteins: Characteristics, Functional Properties and Bioactivities. Plant Foods for Human Nutrition, 2021, 76, 281-291.	1.4	9

#	Article	IF	CITATIONS
73	http://pierre.fkit.hr/hdki/cabeq/pdf/28_3_2014/Cabeq%202014-03-10.pdf. Chemical and Biochemical Engineering Quarterly, 2014, 28, 349-355.	0.5	8
74	Combination of Adsorption and Cellulose Derivative Membrane Coating for Efficient Immobilization of Laccase. Applied Biochemistry and Biotechnology, 2021, 193, 446-462.	1.4	8
75	Efficient removal of ginkgotoxin from <scp><i>Ginkgo biloba</i></scp> seed powder by combining endogenous enzymatic hydrolysis with resin adsorption. Journal of the Science of Food and Agriculture, 2021, 101, 1589-1597.	1.7	8
76	Integrating a light-driven coenzyme regeneration system by expression of an alcohol dehydrogenase in phototrophic bacteria for synthesis of chiral alcohol. Journal of Biotechnology, 2017, 259, 120-125.	1.9	7
77	Improvement of the Quality of Ginkgo biloba Leaves Fermented by Eurotium cristatum as High Value-Added Feed. Processes, 2019, 7, 627.	1.3	7
78	A Facile Method to Determine the Native Contents of 4′- <i>O</i> -Methylpyridoxine and 4′- <i>O</i> -Methylpyridoxine-5′-glucoside in <i>Ginkgo biloba</i> Seeds. Journal of Agricultural and Food Chemistry, 2021, 69, 14270-14277.	2.4	6
79	Insight into the physicochemical properties of deep eutectic solvents by systematically investigating the components. Journal of Molecular Liquids, 2022, 346, 118315.	2.3	6
80	Optimization of the lipase-catalyzed irreversible transesterification of Pistacia chinensis Bunge seed oil for biodiesel production. Russian Chemical Bulletin, 2014, 63, 2719-2728.	0.4	5
81	Highâ€level production of <i>Arthrobacter aurescens</i> CYC705 nitrilase in <i>Escherichia coli</i> for biosynthesis of iminodiacetic acid. Biotechnology and Applied Biochemistry, 2016, 63, 564-571.	1.4	5
82	Hypolipidemic effects of the fermented soymilk with a novel <i>Lactiplantibacillus plantarum</i> strain X7021 on mice via modulating lipid metabolism and gut microbiota. International Journal of Food Science and Technology, 2022, 57, 4555-4565.	1.3	5
83	Improvement of quality of Ginkgo biloba seeds powder by solid-state fermentation with Eurotium cristatum for developing high-value ginkgo seeds products. Journal of Bioresources and Bioproducts, 2022, 7, 135-144.	11.8	5
84	Multi-Omics Analysis of Low-Temperature Fruiting Highlights the Promising Cultivation Application of the Nutrients Accumulation in Hypsizygus marmoreus. Journal of Fungi (Basel, Switzerland), 2022, 8, 695.	1.5	5
85	High-level expression of Cephalosporin C deacetylase from Bacillus subtilis SIL3 in Escherichia coli by a multilevel collaborative strategy. Biochemical Engineering Journal, 2016, 114, 183-190.	1.8	4
86	High-level soluble expression of phospholipase D from Streptomyces chromofuscus in Escherichia coli by combinatorial optimization. Electronic Journal of Biotechnology, 2021, 50, 1-9.	1.2	4
87	A facile pretreatment method for efficient immobilization of penicillin G acylase. Biochemical Engineering Journal, 2011, 56, 17-22.	1.8	3
88	Soluble recombinant pyruvate oxidase production in Escherichia coli can be enhanced and inclusion bodies minimized by avoiding pH stress. Journal of Chemical Technology and Biotechnology, 2019, 94, 2661-2670.	1.6	3
89	Solubilization of phytocomplex using natural deep eutectic solvents: A case study of Ginkgo biloba leaves extract. Industrial Crops and Products, 2022, 177, 114455.	2.5	3
90	Optimizing the Desorption Technology of Total Flavonoids of <i>Ginkgo Biloba</i> from Separating Materials of Activated Carbon. ACS Omega, 2021, 6, 35002-35013.	1.6	3

#	Article	IF	CITATIONS
91	Application of comparative proteome analysis to reveal influence of cultivation conditions on asymmetric bioreduction of \hat{l}^2 -keto ester by Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2008, 80, 831-9.	1.7	1
92	An effective method for extraction of glutaryl-7-aminocephalosporanic acid acylase from recombinant E. coli cells. Biotechnology and Bioprocess Engineering, 2015, 20, 718-724.	1.4	1
93	High-Level Expression of Nitrile Hydratase in Escherichia coli for 2-Amino-2,3-Dimethylbutyramide Synthesis. Processes, 2022, 10, 544.	1.3	1