List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4247778/publications.pdf Version: 2024-02-01

Τιε-Ιιινι Ζιμιι

#	Article	IF	CITATIONS
1	Compromise and Synergy in Highâ€Efficiency Thermoelectric Materials. Advanced Materials, 2017, 29, 1605884.	11.1	1,098
2	Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials. Nature Communications, 2015, 6, 8144.	5.8	893
3	Point Defect Engineering of Highâ€Performance Bismuthâ€Tellurideâ€Based Thermoelectric Materials. Advanced Functional Materials, 2014, 24, 5211-5218.	7.8	619
4	Band engineering of high performance p-type FeNbSb based half-Heusler thermoelectric materials for figure of merit zT > 1. Energy and Environmental Science, 2015, 8, 216-220.	15.6	469
5	High Efficiency Halfâ€Heusler Thermoelectric Materials for Energy Harvesting. Advanced Energy Materials, 2015, 5, 1500588.	10.2	380
6	Tuning Multiscale Microstructures to Enhance Thermoelectric Performance of nâ€Type Bismuthâ€Tellurideâ€Based Solid Solutions. Advanced Energy Materials, 2015, 5, 1500411.	10.2	379
7	High-performance half-Heusler thermoelectric materials Hf1â^'x ZrxNiSn1â^'ySby prepared by levitation melting and spark plasma sintering. Acta Materialia, 2009, 57, 2757-2764.	3.8	373
8	Beneficial Contribution of Alloy Disorder to Electron and Phonon Transport in Halfâ€Heusler Thermoelectric Materials. Advanced Functional Materials, 2013, 23, 5123-5130.	7.8	349
9	Single-Crystalline LiMn2O4 Nanotubes Synthesized Via Template-Engaged Reaction as Cathodes for High-Power Lithium Ion Batteries. Advanced Functional Materials, 2011, 21, 348-355.	7.8	327
10	New Insights into Intrinsic Point Defects in V ₂ VI ₃ Thermoelectric Materials. Advanced Science, 2016, 3, 1600004.	5.6	317
11	Shifting up the optimum figure of merit of p-type bismuth telluride-based thermoelectric materials for power generation by suppressing intrinsic conduction. NPG Asia Materials, 2014, 6, e88-e88.	3.8	272
12	Syntheses and thermoelectric properties of Bi2Te3â^•Sb2Te3 bulk nanocomposites with laminated nanostructure. Applied Physics Letters, 2008, 92, .	1.5	271
13	High Band Degeneracy Contributes to High Thermoelectric Performance in pâ€Type Halfâ€Heusler Compounds. Advanced Energy Materials, 2014, 4, 1400600.	10.2	261
14	High figures of merit and natural nanostructures in Mg2Si0.4Sn0.6 based thermoelectric materials. Applied Physics Letters, 2008, 93, .	1.5	240
15	Low Electron Scattering Potentials in High Performance Mg ₂ Si _{0.45} Sn _{0.55} Based Thermoelectric Solid Solutions with Band Convergence. Advanced Energy Materials, 2013, 3, 1238-1244.	10.2	220
16	The intrinsic disorder related alloy scattering in ZrNiSn half-Heusler thermoelectric materials. Scientific Reports, 2014, 4, 6888.	1.6	213
17	Self-assembly of CoS2/graphene nanoarchitecture by a facile one-pot route and its improved electrochemical Li-storage properties. Nano Energy, 2013, 2, 49-56.	8.2	205
18	Nanostructures in high-performance (GeTe) _{<i>x</i>} (AgSbTe ₂) _{100â^'<i>x</i>} thermoelectric materials. Nanotechnology, 2008, 19, 245707.	1.3	197

#	Article	IF	CITATIONS
19	Hierarchical Chemical Bonds Contributing to the Intrinsically Low Thermal Conductivity in αâ€MgAgSb Thermoelectric Materials. Advanced Functional Materials, 2017, 27, 1604145.	7.8	195
20	Enhanced Multiferroic Properties and Valence Effect of Ru-Doped BiFeO ₃ Thin Films. Journal of Physical Chemistry C, 2010, 114, 6994-6998.	1.5	181
21	Unique Role of Refractory Ta Alloying in Enhancing the Figure of Merit of NbFeSb Thermoelectric Materials. Advanced Energy Materials, 2018, 8, 1701313.	10.2	181
22	Altered long non-coding RNA transcriptomic profiles in brain microvascular endothelium after cerebral ischemia. Experimental Neurology, 2016, 277, 162-170.	2.0	178
23	Recrystallization induced in situ nanostructures in bulk bismuth antimony tellurides: a simple top down route and improved thermoelectric properties. Energy and Environmental Science, 2010, 3, 1519.	15.6	174
24	Nitrogen-doped reduced graphene oxide for high-performance flexible all-solid-state micro-supercapacitors. Journal of Materials Chemistry A, 2014, 2, 18125-18131.	5.2	158
25	Direct Growth of Flowerâ€Like δâ€MnO ₂ on Threeâ€Dimensional Graphene for Highâ€Performance Rechargeable Liâ€O ₂ Batteries. Advanced Energy Materials, 2014, 4, 1301960.	10.2	154
26	Preferential <i>c</i> -Axis Orientation of Ultrathin SnS ₂ Nanoplates on Graphene as High-Performance Anode for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2013, 5, 1588-1595.	4.0	147
27	Enhancing the Figure of Merit of Heavyâ€Band Thermoelectric Materials Through Hierarchical Phonon Scattering. Advanced Science, 2016, 3, 1600035.	5.6	147
28	Carrier grain boundary scattering in thermoelectric materials. Energy and Environmental Science, 2022, 15, 1406-1422.	15.6	145
29	Improving thermoelectric properties of n-type bismuth–telluride-based alloys by deformation-induced lattice defects and texture enhancement. Acta Materialia, 2012, 60, 4431-4437.	3.8	141
30	High Performance Mg ₂ (Si,Sn) Solid Solutions: a Point Defect Chemistry Approach to Enhancing Thermoelectric Properties. Advanced Functional Materials, 2014, 24, 3776-3781.	7.8	141
31	Hybrid Organic–Inorganic Thermoelectric Materials and Devices. Angewandte Chemie - International Edition, 2019, 58, 15206-15226.	7.2	138
32	Demonstration of a phonon-glass electron-crystal strategy in (Hf,Zr)NiSn half-Heusler thermoelectric materials by alloying. Journal of Materials Chemistry A, 2015, 3, 22716-22722.	5.2	137
33	Complex Band Structures and Lattice Dynamics of Bi ₂ Te ₃ â€Based Compounds and Solid Solutions. Advanced Functional Materials, 2019, 29, 1900677.	7.8	135
34	High-efficiency half-Heusler thermoelectric modules enabled by self-propagating synthesis and topologic structure optimization. Energy and Environmental Science, 2019, 12, 3390-3399.	15.6	135
35	Multiple Converged Conduction Bands in K ₂ Bi ₈ Se ₁₃ : A Promising Thermoelectric Material with Extremely Low Thermal Conductivity. Journal of the American Chemical Society, 2016, 138, 16364-16371.	6.6	130
36	Coaxial MnO/C nanotubes as anodes for lithium-ion batteries. Electrochimica Acta, 2011, 56, 5844-5848.	2.6	129

#	Article	IF	CITATIONS
37	Li- and Mn-rich layered oxide cathode materials for lithium-ion batteries: a review from fundamentals to research progress and applications. Molecular Systems Design and Engineering, 2018, 3, 748-803.	1.7	127
38	Nanocrystal manganese oxide (Mn3O4, MnO) anchored on graphite nanosheet with improved electrochemical Li-storage properties. Electrochimica Acta, 2012, 66, 271-278.	2.6	125
39	High Performance α-MgAgSb Thermoelectric Materials for Low Temperature Power Generation. Chemistry of Materials, 2015, 27, 909-913.	3.2	124
40	Enhanced Thermoelectric Performance in 18‣lectron Nb _{0.8} CoSb Halfâ€Heusler Compound with Intrinsic Nb Vacancies. Advanced Functional Materials, 2018, 28, 1705845.	7.8	124
41	Self-assembly of a CoFe2O4/graphene sandwich by a controllable and general route: towards a high-performance anode for Li-ion batteries. Journal of Materials Chemistry, 2012, 22, 19738.	6.7	122
42	Attaining high mid-temperature performance in (Bi,Sb)2Te3 thermoelectric materials via synergistic optimization. NPG Asia Materials, 2016, 8, e302-e302.	3.8	119
43	Enhanced thermoelectric performance of PbTe bulk materials with figure of merit zT >2 by multi-functional alloying. Journal of Materiomics, 2016, 2, 141-149.	2.8	118
44	Mg vacancy and dislocation strains as strong phonon scatterers in Mg 2 Si 1â^'x Sb x thermoelectric materials. Nano Energy, 2017, 34, 428-436.	8.2	116
45	The texture related anisotropy of thermoelectric properties in bismuth telluride based polycrystalline alloys. Applied Physics Letters, 2011, 99, .	1.5	111
46	Enhanced thermoelectric and mechanical properties of zone melted p-type (Bi,Sb)2Te3 thermoelectric materials by hot deformation. Acta Materialia, 2015, 84, 385-392.	3.8	111
47	Enhancement in thermoelectric performance of bismuth telluride based alloys by multi-scale microstructural effects. Journal of Materials Chemistry, 2012, 22, 16484.	6.7	110
48	Hot deformation induced bulk nanostructuring of unidirectionally grown p-type (Bi,Sb)2Te3 thermoelectric materials. Journal of Materials Chemistry A, 2013, 1, 11589.	5.2	110
49	Enhanced thermoelectric properties of p-type CoSb3/graphene nanocomposite. Journal of Materials Chemistry A, 2013, 1, 13111.	5.2	109
50	Enhanced Elevated-Temperature Performance of Al-Doped Single-Crystalline LiMn ₂ O ₄ Nanotubes as Cathodes for Lithium Ion Batteries. Journal of Physical Chemistry C, 2011, 115, 9821-9825.	1.5	107
51	Roles of interstitial Mg in improving thermoelectric properties of Sb-doped Mg2Si0.4Sn0.6 solid solutions. Journal of Materials Chemistry, 2012, 22, 6838.	6.7	107
52	A valence balanced rule for discovery of 18-electron half-Heuslers with defects. Energy and Environmental Science, 2018, 11, 1480-1488.	15.6	105
53	Valleytronics in thermoelectric materials. Npj Quantum Materials, 2018, 3, .	1.8	104
54	Lanthanide Contraction as a Design Factor for Highâ€Performance Halfâ€Heusler Thermoelectric Materials. Advanced Materials, 2018, 30, e1800881.	11.1	101

#	Article	IF	CITATIONS
55	Understanding Li-storage mechanism and performance of MnFe2O4 by in situ TEM observation on its electrochemical process in nano lithium battery. Nano Energy, 2014, 8, 84-94.	8.2	97
56	Flux synthesis and thermoelectric properties of eco-friendly Sb doped Mg2Si0.5Sn0.5 solid solutions for energy harvesting. Journal of Materials Chemistry, 2011, 21, 5933.	6.7	96
57	Double-shelled hollow microspheres of LiMn2O4 for high-performance lithium ion batteries. Journal of Materials Chemistry, 2011, 21, 9475.	6.7	96
58	Reduced Graphene Oxide-Induced Recrystallization of NiS Nanorods to Nanosheets and the Improved Na-Storage Properties. Inorganic Chemistry, 2014, 53, 3511-3518.	1.9	95
59	MnO2/onion-like carbon nanocomposites for pseudocapacitors. Journal of Materials Chemistry, 2012, 22, 17584.	6.7	91
60	Grain Boundary Scattering of Charge Transport in nâ€Type (Hf,Zr)CoSb Halfâ€Heusler Thermoelectric Materials. Advanced Energy Materials, 2019, 9, 1803447.	10.2	88
61	Interrelation between atomic switching disorder and thermoelectric properties of ZrNiSn half-Heusler compounds. CrystEngComm, 2012, 14, 4467.	1.3	87
62	Establishing the carrier scattering phase diagram for ZrNiSn-based half-Heusler thermoelectric materials. Nature Communications, 2020, 11, 3142.	5.8	87
63	Enhanced low voltage cycling stability of LiMn2O4 cathode by ZnO coating for lithium ion batteries. Journal of Alloys and Compounds, 2007, 432, 313-317.	2.8	86
64	Short-range order in defective half-Heusler thermoelectric crystals. Energy and Environmental Science, 2019, 12, 1568-1574.	15.6	86
65	Improved Thermoelectric Performance of Higher Manganese Silicides with Ge Additions. Journal of Electronic Materials, 2010, 39, 2002-2007.	1.0	85
66	Halfâ€Heusler Thermoelectric Module with High Conversion Efficiency and High Power Density. Advanced Energy Materials, 2020, 10, 2000888.	10.2	85
67	Enhanced phonon scattering by mass and strain field fluctuations in Nb substituted FeVSb half-Heusler thermoelectric materials. Journal of Applied Physics, 2012, 112, .	1.1	82
68	In situsynthesis and thermoelectric properties of La-doped Mg2(Si, Sn) composites. Journal Physics D: Applied Physics, 2008, 41, 185103.	1.3	78
69	SnTe–AgSbTe ₂ Thermoelectric Alloys. Advanced Energy Materials, 2012, 2, 58-62.	10.2	78
70	Facile one-pot synthesis of ultrathin NiS nanosheets anchored on graphene and the improved electrochemical Li-storage properties. RSC Advances, 2013, 3, 3899.	1.7	78
71	A novel strategy to significantly enhance the initial voltage and suppress voltage fading of a Li- and Mn-rich layered oxide cathode material for lithium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 3610-3624.	5.2	78
72	Enhancing room temperature thermoelectric performance of n -type polycrystalline bismuth-telluride-based alloys via Ag doping and hot deformation. Materials Today Physics, 2017, 2, 62-68.	2.9	76

#	Article	IF	CITATIONS
73	Enhanced figure of merit in antimony telluride thermoelectric materials by In–Ag co-alloying for mid-temperature power generation. Acta Materialia, 2015, 85, 270-278.	3.8	75
74	Significant Roles of Intrinsic Point Defects in Mg ₂ <i>X</i> (<i>X</i> = Si, Ge, Sn) Thermoelectric Materials. Advanced Electronic Materials, 2016, 2, 1500284.	2.6	75
75	Activation of electrochemical lithium and sodium storage of nanocrystalline antimony by anchoring on graphene via a facile in situ solvothermal route. Journal of Power Sources, 2014, 247, 204-212.	4.0	74
76	Enhancing Thermoelectric Performance of n-Type Hot Deformed Bismuth-Telluride-Based Solid Solutions by Nonstoichiometry-Mediated Intrinsic Point Defects. ACS Applied Materials & Interfaces, 2017, 9, 28577-28585.	4.0	71
77	Liquidâ€Phase Hot Deformation to Enhance Thermoelectric Performance of nâ€type Bismuthâ€Tellurideâ€Based Solid Solutions. Advanced Science, 2019, 6, 1901702.	5.6	71
78	Thermoelectric properties of Gd, Y co-doped Ca3Co4O9+Î′. Current Applied Physics, 2009, 9, 409-413.	1.1	67
79	Demonstration of valley anisotropy utilized to enhance the thermoelectric power factor. Nature Communications, 2021, 12, 5408.	5.8	66
80	High performance p-type half-Heusler thermoelectric materials. Journal Physics D: Applied Physics, 2018, 51, 113001.	1.3	65
81	How to Measure Thermoelectric Properties Reliably. Joule, 2018, 2, 2183-2188.	11.7	65
82	loffe–Regel limit and lattice thermal conductivity reduction of high performance (AgSbTe ₂) ₁₅ (GeTe) ₈₅ thermoelectric materials. Journal of Materials Chemistry A, 2014, 2, 3251-3256.	5.2	64
83	High performance n-type bismuth telluride based alloys for mid-temperature power generation. Journal of Materials Chemistry C, 2015, 3, 10597-10603.	2.7	64
84	A Device-to-Material Strategy Guiding the "Double-High―Thermoelectric Module. Joule, 2020, 4, 2475-2483.	11.7	64
85	Nanostructuring and improved performance of ternary Bi–Sb–Te thermoelectric materials. Applied Physics A: Materials Science and Processing, 2008, 92, 321-324.	1.1	63
86	Phase compositions, nanoscale microstructures and thermoelectric properties in Ag2â^'ySbyTe1+y alloys with precipitated Sb2Te3 plates. Acta Materialia, 2010, 58, 4160-4169.	3.8	63
87	Facile synthesis of layered Zn2SnO4/graphene nanohybrid by a one-pot route and its application as high-performance anode for Li-ion batteries. Journal of Power Sources, 2013, 229, 6-11.	4.0	63
88	Transport mechanisms and property optimization of p-type (Zr, Hf)CoSb half-Heusler thermoelectric materials. Materials Today Physics, 2018, 7, 69-76.	2.9	63
89	High-Performance Mg ₃ Sb _{2- <i>x</i>} Bi <i> _x </i> Thermoelectrics: Progress and Perspective. Research, 2020, 2020, 1934848.	2.8	63
90	Improved thermoelectric figure of merit in n-type CoSb3 based nanocomposites. Applied Physics Letters, 2007, 91, .	1.5	62

#	Article	IF	CITATIONS
91	Self-assembly of a ZnFe2O4/graphene hybrid and its application as a high-performance anode material for Li-ion batteries. New Journal of Chemistry, 2012, 36, 2236.	1.4	62
92	Temperature Dependent nâ€Type Self Doping in Nominally 19â€Electron Halfâ€Heusler Thermoelectric Materials. Advanced Energy Materials, 2018, 8, 1801409.	10.2	62
93	Controllable Synthesis and Shape Evolution of PbTe Three-Dimensional Hierarchical Superstructures via an Alkaline Hydrothermal Method. Journal of Physical Chemistry C, 2009, 113, 8085-8091.	1.5	61
94	Thermoelectric properties of FeVSb half-Heusler compounds by levitation melting and spark plasma sintering. Intermetallics, 2013, 32, 39-43.	1.8	60
95	Anisotropic thermoelectric properties of layered compound SnSe 2. Science Bulletin, 2017, 62, 1663-1668.	4.3	60
96	Growth and transport properties of Mg3X2 (XÂ= Sb, Bi) single crystals. Materials Today Physics, 2018, 7, 61-68.	2.9	60
97	Half-Heusler thermoelectric materials. Applied Physics Letters, 2021, 118, .	1.5	60
98	Synthesis and thermoelectric properties of Bi2Te3 based nanocomposites. Journal of Alloys and Compounds, 2005, 397, 317-321.	2.8	59
99	Microstructure and thermoelectric properties of SiGe-added higher manganese silicides. Materials Chemistry and Physics, 2010, 124, 1001-1005.	2.0	59
100	Enhanced cycling stability of LiMn2O4 by surface modification with melting impregnation method. Electrochimica Acta, 2006, 51, 6456-6462.	2.6	58
101	Reduced Grain Size and Improved Thermoelectric Properties of Melt Spun (Hf,Zr)NiSn Half-Heusler Alloys. Journal of Electronic Materials, 2010, 39, 2008-2012.	1.0	58
102	Design and synthesis of NiO nanoflakes/graphene nanocomposite as high performance electrodes of pseudocapacitor. RSC Advances, 2013, 3, 19409.	1.7	58
103	Flower-like nanostructure and thermoelectric properties of hydrothermally synthesized La-containing Bi2Te3 based alloys. Materials Chemistry and Physics, 2007, 103, 484-488.	2.0	57
104	Improved thermoelectric properties of AgSbTe2 based compounds with nanoscale Ag2Te in situ precipitates. Journal of Alloys and Compounds, 2010, 499, 215-220.	2.8	55
105	Microstructures and thermoelectric properties of GeSbTe based layered compounds. Applied Physics A: Materials Science and Processing, 2007, 88, 425-428.	1.1	54
106	Electron and phonon transport in Co-doped FeV0.6Nb0.4Sb half-Heusler thermoelectric materials. Journal of Applied Physics, 2013, 114, 134905.	1.1	54
107	Lattice thermal conductivity and spectral phonon scattering in FeVSb-based half-Heusler compounds. Europhysics Letters, 2013, 104, 46003.	0.7	54
108	Synthesis of PbTe thermoelectric materials by alkaline reducing chemical routes. Materials Research Bulletin, 2008, 43, 2850-2854.	2.7	53

#	Article	IF	CITATIONS
109	Enhancing thermoelectric performance of FeNbSb half-Heusler compound by Hf-Ti dual-doping. Energy Storage Materials, 2018, 10, 69-74.	9.5	53
110	Evolution of the Intrinsic Point Defects in Bismuth Telluride-Based Thermoelectric Materials. ACS Applied Materials & Interfaces, 2019, 11, 41424-41431.	4.0	53
111	Approaching the minimum lattice thermal conductivity of p-type SnTe thermoelectric materials by Sb and Mg alloying. Science Bulletin, 2019, 64, 1024-1030.	4.3	53
112	Aqueous chemical reduction synthesis of Bi2Te3 nanowires with surfactant assistance. Materials Letters, 2006, 60, 2534-2537.	1.3	52
113	Medium Entropyâ€Enabled High Performance Cubic GeTe Thermoelectrics. Advanced Science, 2021, 8, 2100220.	5.6	51
114	Key properties of inorganic thermoelectric materials—tables (version 1). JPhys Energy, 2022, 4, 022002.	2.3	51
115	Thermoelectric performance of Mg2â^'xCaxSi compounds. Journal of Alloys and Compounds, 2008, 464, 9-12.	2.8	50
116	Solvothermal synthesis and electrical transport properties of skutterudite CoSb3. Journal of Alloys and Compounds, 2006, 417, 269-272.	2.8	49
117	Revealing the Intrinsic Electronic Structure of 3D Halfâ€Heusler Thermoelectric Materials by Angleâ€Resolved Photoemission Spectroscopy. Advanced Science, 2020, 7, 1902409.	5.6	49
118	Mushroom-like Au/NiCo ₂ O ₄ nanohybrids as high-performance binder-free catalytic cathodes for lithium–oxygen batteries. Journal of Materials Chemistry A, 2015, 3, 5714-5721.	5.2	48
119	Tuning Optimum Temperature Range of Bi ₂ Te ₃ â€Based Thermoelectric Materials by Defect Engineering. Chemistry - an Asian Journal, 2020, 15, 2775-2792.	1.7	46
120	Improved performance of LiMn2O4 cathode materials for lithium ion batteries by gold coating. Materials Letters, 2006, 60, 3251-3254.	1.3	45
121	Anisotropic Growth of Cubic PbTe Nanoparticles to Nanosheets: Controlled Synthesis and Growth Mechanisms. Crystal Growth and Design, 2010, 10, 3727-3731.	1.4	44
122	Enhanced thermoelectric performance in the n-type NbFeSb half-Heusler compound with heavy element Ir doping. Materials Today Physics, 2019, 8, 62-70.	2.9	44
123	Thermoelectric properties of n-type half-Heusler NbCoSn with heavy-element Pt substitution. Journal of Materials Chemistry A, 2020, 8, 14822-14828.	5.2	44
124	Miscibility gap and thermoelectric properties of ecofriendly Mg ₂ Si _{1â^'<i>x</i>} Sn <i>_x</i> (0.1 ≤i>x ≤0.8) solid solutions by flux method. Journal of Materials Research, 2011, 26, 3038-3043.	1.2	42
125	Band Structures and Transport Properties of High-Performance Half-Heusler Thermoelectric Materials by First Principles. Materials, 2018, 11, 847.	1.3	42
126	Thermoelectric properties of nonstoichiometric PbTe prepared by HPHT. Journal of Alloys and Compounds, 2009, 468, 410-413.	2.8	41

#	Article	IF	CITATIONS
127	One-pot synthesis of ultrafine ZnFe2O4 nanocrystals anchored on graphene for high-performance Li and Li-ion batteries. RSC Advances, 2014, 4, 7703.	1.7	41
128	The enhanced electrochemical response of Sr(Ti _{0.3} Fe _{0.7} Ru _{0.07})O _{3â^îî} anodes due to exsolved Ru–Fe nanoparticles. Journal of Materials Chemistry A, 2018, 6, 5193-5201.	5.2	41
129	Enhanced thermoelectric properties of Mg2Si0.58Sn0.42 compounds by Bi doping. Materials Letters, 2012, 66, 76-78.	1.3	40
130	In situ TEM characterization of single PbSe/reduced-graphene-oxide nanosheet and the correlation with its electrochemical lithium storage performance. Nano Energy, 2014, 5, 122-131.	8.2	39
131	Enhanced thermoelectric performance of n-type bismuth-telluride-based alloys via In alloying and hot deformation for mid-temperature power generation. Journal of Materiomics, 2018, 4, 208-214.	2.8	39
132	Au-nanocrystals-decorated δ-MnO ₂ as an efficient catalytic cathode for high-performance Li–O ₂ batteries. Nanoscale, 2015, 7, 9589-9596.	2.8	38
133	The Role of Electron–Phonon Interaction in Heavily Doped Fineâ€Grained Bulk Silicons as Thermoelectric Materials. Advanced Electronic Materials, 2016, 2, 1600171.	2.6	38
134	Continuously Enhanced Structural Disorder To Suppress the Lattice Thermal Conductivity of ZrNiSn-Based Half-Heusler Alloys by Multielement and Multisite Alloying with Very Low Hf Content. ACS Applied Materials & Interfaces, 2019, 11, 13397-13404.	4.0	38
135	In-situ investigation and effect of additives on low temperature aqueous chemical synthesis of Bi2Te3 nanocapsules. Journal of Materials Chemistry, 2005, 15, 1621.	6.7	37
136	Studies of cycleability of LiMn2O4 and LiLa0.01Mn1.99O4 as cathode materials for Li-ion battery. Physica B: Condensed Matter, 2006, 382, 129-134.	1.3	37
137	Electrochemical performance of LiFe1â^'xVxPO4/carbon composites prepared by solid-state reaction. Journal of Alloys and Compounds, 2008, 463, 385-389.	2.8	37
138	Low Contact Resistivity and Interfacial Behavior of p-Type NbFeSb/Mo Thermoelectric Junction. ACS Applied Materials & Interfaces, 2019, 11, 14182-14190.	4.0	37
139	Thermoelectric properties of Yb0.15Co4Sb12based nanocomposites with CoSb3nano-inclusion. Journal Physics D: Applied Physics, 2008, 41, 205403.	1.3	36
140	Thermoelectric performance of p-type zone-melted Se-doped Bi0.5Sb1.5Te3 alloys. Rare Metals, 2018, 37, 308-315.	3.6	36
141	Effect of Sb Doping on the Thermoelectric Properties of Mg2Si0.7Sn0.3 Solid Solutions. Journal of Electronic Materials, 2011, 40, 830-834.	1.0	35
142	Facile synthesis of C–Fe3O4–C core–shell nanotubes by a self-templating route and the application as a high-performance anode for Li-ion batteries. RSC Advances, 2013, 3, 6787.	1.7	35
143	Facile solvothermal synthesis of ultrathin LiFe _x Mn _{1â^'x} PO ₄ nanoplates as advanced cathodes with long cycle life and superior rate capability. Journal of Materials Chemistry A, 2015, 3, 19368-19375.	5.2	35
144	Facile synthesis of ultrafine CoSn ₂ nanocrystals anchored on graphene by one-pot route and the improved electrochemical Li-storage properties. New Journal of Chemistry, 2013, 37, 474-480.	1.4	34

#	Article	lF	CITATIONS
145	Effects of Graphene Oxide Function Groups on SnO2/Graphene Nanocomposites for Lithium Storage Application. Electrochimica Acta, 2015, 154, 338-344.	2.6	34
146	Synthesis of Nanocomposites with Improved Thermoelectric Properties. Journal of Electronic Materials, 2009, 38, 1017-1024.	1.0	33
147	Composites of Higher Manganese Silicides and Nanostructured Secondary Phases and Their Thermoelectric Properties. Journal of Electronic Materials, 2009, 38, 1072-1077.	1.0	33
148	Thermal conductivity and specific heat of bulk amorphous chalcogenides Ge20Te80â^'xSex (x=0,1,2,8). Journal of Non-Crystalline Solids, 2009, 355, 79-83.	1.5	33
149	Improved Thermoelectric Performance of p-Type Bismuth Antimony Telluride Bulk Alloys Prepared by Hot Forging. Journal of Electronic Materials, 2011, 40, 1095-1099.	1.0	33
150	Enhanced thermoelectric performance of Bi2Se3/TiO2 composite. Rare Metals, 2020, 39, 887-894.	3.6	33
151	Thermoelectric properties of perovskite-type oxide La1â [~] 'xSrxCoO3 (x=0, 0.1) prepared by solid state reactions. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2006, 128, 174-178.	1.7	32
152	Increased electrical conductivity in fine-grained (Zr,Hf)NiSn based thermoelectric materials with nanoscale precipitates. Applied Physics Letters, 2012, 100, .	1.5	32
153	Self-propagation high-temperature synthesis of half-Heusler thermoelectric materials: reaction mechanism and applicability. Journal of Materials Chemistry A, 2018, 6, 19470-19478.	5.2	32
154	Si/Ti3SiC2 composite anode with enhanced elastic modulus and high electronic conductivity for lithium-ion batteries. Journal of Power Sources, 2019, 431, 55-62.	4.0	32
155	Synthesis of Li1+xV3O8 by citrate sol–gel route at low temperature. Journal of Alloys and Compounds, 2005, 403, 345-348.	2.8	31
156	Fabrication and thermoelectric properties of perovskite-type oxide La1â^'xSrxCoO3 (x=0, 0.1). Journal of Alloys and Compounds, 2008, 449, 105-108.	2.8	31
157	Improved Thermoelectric Properties in Lu-doped Yb\$_{14}\$MnSb\$_{11}\$ Zintl Compounds. Applied Physics Express, 2012, 5, 031801.	1.1	31
158	Improving p-type thermoelectric performance of Mg2(Ge,Sn) compounds via solid solution and Ag doping. Intermetallics, 2013, 32, 312-317.	1.8	31
159	Preparation and thermoelectric properties of bulk <i>in situ</i> nanocomposites with amorphous/nanocrystal hybrid structure. Journal Physics D: Applied Physics, 2007, 40, 6094-6097.	1.3	30
160	Thermoelectric properties of hydrothermally synthesized and hot pressed n-type Bi2Te3 alloys with different contents of Te. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 117, 119-122.	1.7	29
161	Sonochemical synthesis of nanocrystalline Bi2Te3 thermoelectric compounds. Materials Letters, 2005, 59, 2886-2888.	1.3	29
162	Nanosized La filled CoSb3 prepared by a solvothermal-annealing method. Materials Letters, 2008, 62, 2363-2365.	1.3	29

TIE-JUN ZHU

#	Article	IF	CITATIONS
163	High performance half-Heusler thermoelectric materials with refined grains and nanoscale precipitates. Journal of Materials Research, 2012, 27, 2457-2465.	1.2	29
164	Elaborating the Crystal Structures of MgAgSb Thermoelectric Compound: Polymorphs and Atomic Disorders. Chemistry of Materials, 2017, 29, 6378-6388.	3.2	29
165	Tunable Optimum Temperature Range of High-Performance Zone Melted Bismuth-Telluride-Based Solid Solutions. Crystal Growth and Design, 2018, 18, 4646-4652.	1.4	29
166	Preparation and transport properties of CeSi2/HMS thermoelectric composites. Journal of Alloys and Compounds, 2008, 455, 255-258.	2.8	28
167	Synthesis and growth mechanism of rough PbTe polycrystalline thermoelectric nanorods. Journal of Crystal Growth, 2009, 311, 3179-3183.	0.7	28
168	Synthesis and thermoelectric properties of double-filled skutterudites CeyYb0.5â^'yFe1.5Co2.5Sb12. Journal of Alloys and Compounds, 2009, 467, 528-532.	2.8	28
169	Mechanochemical decomposition of higher manganese silicides in the ball milling process. Intermetallics, 2010, 18, 2051-2056.	1.8	28
170	A Novel Perovskite Electron–Ion Conductive Coating to Simultaneously Enhance Cycling Stability and Rate Capability of Li _{1.2} Ni _{0.13} Co _{0.13} Mn _{0.54} O ₂ Cathode Material for Lithiumâ€ion Batteries. Small, 2021, 17, e2008132.	5.2	28
171	Fast synthesis and improved electrical stability in n-type Ag2Te thermoelectric materials. Journal of Materials Science and Technology, 2021, 91, 241-250.	5.6	28
172	Hydrothermally synthesized and hot-pressed Bi2(Te,Se)3 thermoelectric alloys. Physica B: Condensed Matter, 2005, 364, 50-54.	1.3	26
173	Bulk Nanostructured Thermoelectric Materials: Preparation, Structure and Properties. Journal of Electronic Materials, 2010, 39, 1990-1995.	1.0	26
174	White matter changes linked to visual recovery after nerve decompression. Science Translational Medicine, 2014, 6, 266ra173.	5.8	26
175	<i>>A</i> ₁₄ MgBi ₁₁ (<i>>A</i> = Ca, Sr, Eu): Magnesium Bismuth Based Zintl Phases as Potential Thermoelectric Materials. Inorganic Chemistry, 2017, 56, 10576-10583.	1.9	26
176	Enhancing the average thermoelectric figure of merit of elemental Te by suppressing grain boundary scattering. Journal of Materials Chemistry A, 2020, 8, 8455-8461.	5.2	26
177	Transport properties of rapid solidified Fe–Si–Mn–Cu thermoelectric alloys. Journal of Alloys and Compounds, 2000, 306, 303-306.	2.8	25
178	Influence of nitrogenizing and Al-doping on microstructures and thermoelectric properties of iron disilicide materials. Intermetallics, 2005, 13, 704-709.	1.8	25
179	Thermoelectric properties of skutterudites FexNiyCo1â^'xâ^'ySb3 (x=y). Journal of Alloys and Compounds, 2008, 452, 225-229.	2.8	25
180	Are Solid Solutions Better in FeNbSbâ€Based Thermoelectrics?. Advanced Electronic Materials, 2016, 2, 1600394.	2.6	25

#	Article	IF	CITATIONS
181	Violation of the <i>T</i> ^{â^'1} Relationship in the Lattice Thermal Conductivity of Mg ₃ Sb ₂ with Locally Asymmetric Vibrations. Research, 2020, 2020, 4589786.	2.8	25
182	Structure, Magnetism, and Thermoelectric Properties of Magnesium-Containing Antimonide Zintl Phases Sr ₁₄ MgSb ₁₁ and Eu ₁₄ MgSb ₁₁ . Inorganic Chemistry, 2017, 56, 1646-1654.	1.9	24
183	A simple model for vacancy order and disorder in defective half-Heusler systems. IUCrJ, 2020, 7, 673-680.	1.0	24
184	Synthesis and high temperature thermoelectric properties of calcium and cerium double-filled skutterudites Ca _{0.1} Ce _{<i>x</i>} Co ₄ Sb ₁₂ . Journal Physics D: Applied Physics, 2009, 42, 105408.	1.3	23
185	One-step Solid-state Synthesis and Electrochemical Performance of Nb-doped LiFePO4/C. Acta Physico-chimica Sinica, 2006, 22, 840-844.	0.6	22
186	Thermoelectric and thermomechanical properties of the hot pressed polycrystalline Bi0.5Sb1.5Te3 alloys. Journal of Alloys and Compounds, 2011, 509, 161-164.	2.8	22
187	Atomic disordering advances thermoelectric group IV telluride alloys with a multiband transport. Materials Today Physics, 2020, 15, 100247.	2.9	22
188	Co(OH)2/graphene sheet-on-sheet hybrid as high-performance electrochemical pseudocapacitor electrodes. Journal of Solid State Electrochemistry, 2013, 17, 1159-1165.	1.2	21
189	A new defective 19-electron TiPtSb half-Heusler thermoelectric compound with heavy band and low lattice thermal conductivity. Materials Today Physics, 2020, 13, 100200.	2.9	21
190	Thermoelectric transport effects beyond single parabolic band and acoustic phonon scattering. Materials Advances, 2022, 3, 734-755.	2.6	21
191	Thermoelectric Properties and n- to p-Type Conversion of Co-Doped ZrNiSn-Based Half-Heusler Alloys. Journal of Electronic Materials, 2012, 41, 1826-1830.	1.0	20
192	The effect of texture degree on the anisotropic thermoelectric properties of (Bi,Sb) ₂ (Te,Se) ₃ based solid solutions. RSC Advances, 2016, 6, 98646-98651.	1.7	20
193	Synthesis and thermoelectric properties of Rashba semiconductor BiTeBr with intensive texture. Rare Metals, 2018, 37, 274-281.	3.6	20
194	Defect modulation on CaZn _{1â^'x} Ag _{1â^'y} Sb (0 < <i>x</i> < 1; 0 < <i>y</i>) Tj ET Materials Chemistry A, 2018, 6, 11773-11782.	Qq0 0 0 r 5.2	gBT /Overlock 20
195	Creep behavior and postcreep thermoelectric performance of the n-type half-Heusler alloy Hf0.3Zr0.7NiSn0.98Sb0.02. Materials Today Physics, 2019, 9, 100134.	2.9	20
196	Low-cost p-type Bi2Te2.7Se0.3 zone-melted thermoelectric materials for solid-state refrigeration. Journal of Alloys and Compounds, 2020, 831, 154732.	2.8	20
197	Fabrication and thermoelectric properties of Yb-doped ZrNiSn half-Heusler alloys. International Journal of Smart and Nano Materials, 2012, 3, 64-71.	2.0	19
198	Enhanced thermoelectric performance of n-type PbTe bulk materials fabricated by semisolid powder processing. Journal of Alloys and Compounds, 2014, 609, 201-205.	2.8	19

TIE-JUN ZHU

#	Article	IF	CITATIONS
199	Enhancing the room temperature thermoelectric performance of n-type Bismuth-telluride-based polycrystalline materials by low-angle grain boundaries. Materials Today Physics, 2022, 22, 100573.	2.9	19
200	Microstructure and electrical properties of quenched AgPb18Sb1â^'xTe20 thermoelectric materials. Journal Physics D: Applied Physics, 2007, 40, 3537-3540.	1.3	18
201	High-Performance (Ag x SbTe x/2+1.5)15(GeTe)85 Thermoelectric Materials Prepared by Melt Spinning. Journal of Electronic Materials, 2010, 39, 1719-1723.	1.0	18
202	Role of Pb(Zr0.52Ti0.48)O3 substitution in multiferroic properties of polycrystalline BiFeO3 thin films. Journal of Applied Physics, 2011, 110, .	1.1	17
203	Self-assembly of Co Sb-nanocrystal/graphene hybrid nanostructure with improved Li-storage properties via a facile in situ solvothermal route. Journal of Power Sources, 2012, 202, 276-283.	4.0	17
204	Mo-Fe/NbFeSb Thermoelectric Junctions: Anti-Thermal Aging Interface and Low Contact Resistivity. ACS Applied Materials & Interfaces, 2021, 13, 7317-7323.	4.0	17
205	Orientation of MgO thin films grown by pulsed laser deposition. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2006, 129, 96-99.	1.7	16
206	Crystallization kinetics of Si15Te85 and Si20Te80 chalcogenide glasses. Physica B: Condensed Matter, 2008, 403, 3459-3463.	1.3	16
207	Thermoelectric Properties of Zintl Compound YbZn2Sb2 with Mn Substitution in Anionic Framework. Journal of Electronic Materials, 2009, 38, 1068-1071.	1.0	16
208	Electrochemical properties of 0.5Li2MnO3·0.5Li4Mn5O12 nanotubes prepared by a self-templating method. Electrochimica Acta, 2013, 111, 447-454.	2.6	16
209	Microstructure and thermoelectric properties of InSb compound with nonsoluble NiSb in situ precipitates. Journal of Materials Research, 2013, 28, 3394-3400.	1.2	16
210	Influence of Sb doping on thermoelectric properties of Mg2Ge materials. Intermetallics, 2015, 56, 33-36.	1.8	16
211	Improving deformability of Sb 2 Te 3 layered material by dislocation climb at anti-phase boundary. Scripta Materialia, 2017, 135, 10-14.	2.6	16
212	Multiscale Defects as Strong Phonon Scatters to Enhance Thermoelectric Performance in Mg ₂ Sn _{1–} <i>_x</i> Sb <i>_x</i> Solid Solutions. Small Methods, 2019, 3, 1900412.	4.6	16
213	Electrochemical Compatibility of Solidâ€State Electrolytes with Cathodes and Anodes for Allâ€Solidâ€State Lithium Batteries: A Review. Advanced Energy and Sustainability Research, 2021, 2, 2000101.	2.8	16
214	Comprehensive thermal growth compensation method of spindle and servo axis error on a vertical drilling center. International Journal of Advanced Manufacturing Technology, 2017, 88, 2507-2516.	1.5	15
215	Improved thermoelectric properties of zone-melted p-type bismuth-telluride-based alloys for power generation. Rare Metals, 2022, 41, 1490-1495.	3.6	15
216	Simultaneous Realization of Flexibility and Ultrahigh Normalized Power Density in a Heatsink-Free Thermoelectric Generator via Fine Thermal Regulation. ACS Applied Materials & Interfaces, 2022, 14, 1045-1055.	4.0	15

TIE-JUN ZHU

#	Article	IF	CITATIONS
217	High-Power-Density Wearable Thermoelectric Generators for Human Body Heat Harvesting. ACS Applied Materials & Interfaces, 2022, 14, 21224-21231.	4.0	15
218	Variation of leakage mechanism and potential barrier in La and Ru co-doped BiFeO ₃ thin films. Journal Physics D: Applied Physics, 2011, 44, 435302.	1.3	14
219	Controllable synthesis of hollow α-Fe2O3 nanostructures, their growth mechanism, and the morphology-reserved conversion to magnetic Fe3O4/C nanocomposites. RSC Advances, 2013, 3, 19097.	1.7	14
220	Reduced lattice thermal conductivity in nanograined Na-doped PbTe alloys by ball milling and semisolid powder processing. Materials Letters, 2015, 140, 103-106.	1.3	14
221	Solvothermal synthesis of nanostructured ternary skutterudite Fe0.5Ni0.5Sb3. Journal of Alloys and Compounds, 2005, 399, 260-263.	2.8	13
222	Characterization of particulate sol–gel synthesis of LiNi0.8Co0.2O2 via maleic acid assistance with different solvents. Journal of Alloys and Compounds, 2006, 420, 298-305.	2.8	13
223	Grain size effect on the phase transformations of higher manganese silicide thermoelectric materials: An in situ energy dispersive x-ray diffraction study. Journal of Materials Research, 2011, 26, 1900-1906.	1.2	13
224	Scattering Mechanisms and Compositional Optimization of Highâ€Performance Elemental Te as a Thermoelectric Material. Advanced Electronic Materials, 2020, 6, 2000038.	2.6	13
225	Sublattice Short-Range Order and Modified Electronic Structure in Defective Half-Heusler Nb _{0.8} CoSb. Journal of Physical Chemistry C, 2021, 125, 1125-1133.	1.5	13
226	MICROSTRUCTURE AND THERMOELECTRIC PROPERTIES OF (Zr,Hf)NiSn-BASED HALF-HEUSLER ALLOYS BY MELT SPINNING AND SPARK PLASMA SINTERING. Functional Materials Letters, 2010, 03, 227-231.	0.7	12
227	Influence of La and Ru Dopants on Multiferroic Properties of Polycrystalline BiFeO\$_{3}\$ Thin Films. Applied Physics Express, 2011, 4, 111502.	1.1	12
228	NiO/Graphene Nanocomposite as Anode Material for Lithium–Ion Batteries. Nanoscience and Nanotechnology Letters, 2012, 4, 35-40.	0.4	12
229	Electrochemical performance of TiO ₂ /carbon nanotubes nanocomposite prepared by an in situ route for Li-ion batteries. Journal of Materials Research, 2012, 27, 417-423.	1.2	12
230	Study on the effect of Pb partial substitution for Te on the thermoelectric properties of La ₃ Te _{4â^'x} Pb _x materials. Journal Physics D: Applied Physics, 2012, 45, 185303.	1.3	12
231	Reduced graphene oxide induced confined growth of PbTe crystals and enhanced electrochemical Li-storage properties. RSC Advances, 2013, 3, 23612.	1.7	12
232	Mode Grüneisen parameters of an efficient thermoelectric half-Heusler. Journal of Applied Physics, 2018, 124, .	1.1	12
233	Enhancing room-temperature thermoelectric performance of n-type Bi2Te3-based alloys via sulfur alloying. Rare Metals, 2021, 40, 513-520.	3.6	12
234	Phase transition of FeSi2 and Fe2Si5 based alloys prepared by melt spinning. Journal of Materials Science Letters, 2001, 20, 1831-1833.	0.5	11

#	Article	IF	CITATIONS
235	In situ energy dispersive X-ray diffraction study of iron disilicide thermoelectric materials. Journal of Physics and Chemistry of Solids, 2008, 69, 2013-2018.	1.9	11
236	Nanostructured PbTe compound synthesized by a simple chemical route. Journal of Alloys and Compounds, 2010, 493, 423-426.	2.8	11
237	Graphene-induced confined crystal growth of octahedral Zn ₂ SnO ₄ and its improved Li-storage properties. Journal of Materials Research, 2012, 27, 3096-3102.	1.2	11
238	Thermoelectric properties of YbxCo4Sb12 system. Journal of Rare Earths, 2012, 30, 456-459.	2.5	11
239	Reliable measurements of the Seebeck coefficient on a commercial system. Journal of Materials Research, 2015, 30, 2670-2677.	1.2	11
240	Microstructure and thermoelectric properties of porous Bi2Te2.85Se0.15 bulk materials fabricated by semisolid powder processing. Journal of Materials Research, 2015, 30, 2585-2592.	1.2	11
241	Visualizing the Mg atoms in Mg3Sb2 thermoelectrics using advanced iDPC-STEM technique. Materials Today Physics, 2021, 21, 100524.	2.9	11
242	Influence of NaOH on the synthesis of Bi2Te3 via a low-temperature aqueous chemical method. Journal of Materials Science, 2009, 44, 3528-3532.	1.7	10
243	Improved Thermoelectric Properties of (GeTe)90(Ag y Sb2â^'y Te3â^'y)10 by Tuning the Ag-to-Sb Ratio. Journal of Electronic Materials, 2011, 40, 1244-1248.	1.0	10
244	First-principles studies of lattice dynamics and thermal properties of Mg ₂ Si _{1â^'<i>x</i>} Sn _{<i>x</i>} . Journal of Materials Research, 2015, 30, 2578-2584.	1.2	10
245	Low contact resistivity and long-term thermal stability of Nb0.8Ti0.2FeSb/Ti thermoelectric junction. Journal of Materials Science and Technology, 2020, 40, 113-118.	5.6	10
246	Doping effect on thermoelectric properties of nonstoichiometric AgSbTe2 compounds. International Journal of Minerals, Metallurgy and Materials, 2011, 18, 352-356.	2.4	9
247	Hot deformation induced defects and performance enhancement in FeSb2 thermoelectric materials. Journal of Applied Physics, 2013, 114, .	1.1	9
248	Self-templating synthesis of single crystalline LiNi _{0.5} Mn _{1.5} O ₄ nanotubes with improved electrochemical performance. Functional Materials Letters, 2014, 07, 1450009	0.7	9
249	Synergetic effect of Zn substitution on the electron and phonon transport in Mg2Si0.5Sn0.5-based thermoelectric materials. Dalton Transactions, 2014, 43, 14072-14078.	1.6	9
250	Editorial for rare metals, special issue on advanced thermoelectric materials. Rare Metals, 2018, 37, 257-258.	3.6	9
251	Mid-temperature thermoelectric performance of zone-melted Sb2(Te,Se)3 alloys near phase transition boundary. Journal of Materiomics, 2019, 5, 590-596.	2.8	9
252	Epitaxial growth and ferroelectric properties of Pb(Zr0.52Ti0.48)O3/SrRuO3 heterostructures on exact SrTiO3(001) substrates. Journal of Crystal Growth, 2006, 291, 385-389.	0.7	8

#	Article	IF	CITATIONS
253	Pb(Zr0.52Ti0.48)O3/TiNi multilayered heterostructures on Si substrates for smart systems. Thin Solid Films, 2006, 515, 1445-1449.	0.8	8
254	Electrochemical performance of LiMn2O4 microcubes prepared by a self-templating route. Journal of Solid State Electrochemistry, 2013, 17, 2589-2594.	1.2	8
255	Direct visualization of spatially correlated displacive short-range ordering in Nb _{0.8} CoSb. Nanoscale, 2020, 12, 21624-21628.	2.8	8
256	Tuneable local order in thermoelectric crystals. IUCrJ, 2021, 8, 695-702.	1.0	8
257	Forging Inspired Processing of Sodiumâ€Fluorinated Graphene Composite as Dendriteâ€Free Anode for Longâ€Life Na–CO ₂ Cells. Energy and Environmental Materials, 2022, 5, 572-581.	7.3	8
258	A study of the crystallization kinetics of Ge-Te amorphous systems. International Journal of Minerals, Metallurgy, and Materials, 2007, 14, 64-67.	0.2	7
259	Antimony Telluride Thin Films Electrodeposited in an Alkaline Electrolyte. Journal of Electronic Materials, 2011, 40, 1506-1511.	1.0	7
260	Preparation and Li-storage properties of SnSb/graphene hybrid nanostructure by a facile one-step solvothermal route. International Journal of Smart and Nano Materials, 0, , 1-11.	2.0	7
261	Thermoelectric properties of non-stoichiometric AgSbTe2based alloys with a small amount of GeTe addition. Journal Physics D: Applied Physics, 2012, 45, 115302.	1.3	7
262	LiMn ₂ O ₄ microspheres secondary structure of nanoparticles/plates as cathodes for Li-ion batteries. Journal of Materials Research, 2013, 28, 1343-1348.	1.2	7
263	Origin of efficient thermoelectric performance in half-Heusler FeNb0.8Ti0.2Sb. Journal of Applied Physics, 2018, 123, .	1.1	7
264	Anisotropic Thermoelectric Properties of <i>n</i> -Type Te-Free (Bi, Sb) ₂ Se ₃ with Orthorhombic Structure. ACS Applied Energy Materials, 2020, 3, 2070-2077.	2.5	7
265	Effects of Ball-Milling Atmosphere on the Thermoelectric Properties of TAGS-85 Compounds. Journal of Electronic Materials, 2009, 38, 1142-1147.	1.0	6
266	Electrochemical Performance of 0.5Li2MnO3{middle dot}0.5LiNi0.5Mn0.5O2 Nanotubes Prepared by a Self-Templating Route. ECS Electrochemistry Letters, 2013, 2, A98-A101.	1.9	6
267	Low-resistivity bulk silicon prepared by hot-pressing boron- and phosphorus-hyperdoped silicon nanocrystals. AIP Advances, 2014, 4, .	0.6	6
268	Thermal Error Modeling Method for a CNC Machine Tool Feed Drive System. Mathematical Problems in Engineering, 2015, 2015, 1-6.	0.6	6
269	Pressure tuning of thermoelectric performance in FeNbSb. Journal of Alloys and Compounds, 2019, 805, 1224-1230.	2.8	6
270	Influence of Electron–Phonon Interaction on the Lattice Thermal Conductivity in Singleâ€Crystal Si. Annalen Der Physik, 2020, 532, 1900435.	0.9	6

#	Article	IF	CITATIONS
271	Thermoelectric Properties of n-type CoSb ₃ Nanocomposite Prepared by <i>in~situ</i> Solvothermal Synthesis and Hot Pressing. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2008, 23, 715-718.	0.6	6
272	High-performance Ni/Fe-codoped manganese hexacyanoferrate by scale-up synthesis for practical Na-ion batteries. Materials Today Sustainability, 2022, 18, 100113.	1.9	6
273	Thermoelectric properties of quaternary Mg2Sn0.4Si0.6â^'xGex alloys. International Journal of Minerals, Metallurgy and Materials, 2009, 16, 564-567.	2.4	5
274	Additive-aided electrochemical deposition of bismuth telluride in a basic electrolyte. International Journal of Minerals, Metallurgy and Materials, 2010, 17, 489-493.	2.4	5
275	Thermoelectric properties of Sb-doped Mg ₂ Si _{0.59} Sn _{0.41} solid solutions. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 2359-2363.	0.8	5
276	Variations of thermoelectric properties of Mg2.2Si1â^'Snâ^'0.013Sb0.013 materials with different Si/Sn ratios. Journal of Solid State Chemistry, 2014, 220, 157-162.	1.4	5
277	Microstructure of ZrNiSn-base Half-Heusler Thermoelectric Materials Prepared by Melt-spinning. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2010, 25, 569-572.	0.6	5
278	Low interfacial resistivity in CoSi2/ZrCoSb thermoelectric junctions. Materials Today Energy, 2022, 25, 100960.	2.5	5
279	Realizing n-type gete through suppressing the formation of cation vacancies and bi-doping*. Chinese Physics Letters, 2021, 38, 127201.	1.3	5
280	Defect control in Ca _{1â^'δ} Ce _δ Ag _{1â^'δ} Sb (δâ‰^0.15) through Nb doping. Inorganic Chemistry Frontiers, 2017, 4, 1113-1119.	3.0	4
281	Preparation and Thermoelectric Properties of Melt-Spun Fe ₂ Si ₅ Based Alloys. Materials Science Forum, 2003, 437-438, 471-474.	0.3	3
282	P-type doping of Hf0.6Zr0.4NiSn half-Heusler thermoelectric materials prepared by levitation melting and spark plasma sintering. Journal of Materials Research, 2011, 26, 1913-1918.	1.2	3
283	Thermoelectric Materials. Annalen Der Physik, 2020, 532, 2000435.	0.9	3
284	Bulk higher manganese silicide thermoelectric materials and modules. Procedia Engineering, 2012, 27, 94-102.	1.2	2
285	Enhanced thermoelectric properties of Co1â^xâ^'y Ni x+y Sb3â^'x Sn x materials. International Journal of Minerals, Metallurgy and Materials, 2012, 19, 240-244.	2.4	2
286	THERMOELECTRIC PROPERTIES OF p-TYPE SKUTTERUDITES (Pr _{0.25} Nd _{0.75}) _x Fe _{3BY LEVITATION MELTING AND SPARK PLASMA SINTERING. Functional Materials Letters, 2013, 06, 1340006.}	ub o. 7font>	CøSb
287	Nanostructured Bi2Te3 synthesized by low temperature aqueous chemical route. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2006, 1, 188-192.	0.4	1
288	Solvothermal synthesis and thermoelectric properties of skutterudite compound Fe0.25Ni0.25Co0.5Sb3. Rare Metals, 2009, 28, 237-240.	3.6	1

#	Article	IF	CITATIONS
289	Effects of Co:Sb Molar Ratio on Synthesis and Properties of Undoped CoSb3 Prepared via a Polyol Method. Journal of Electronic Materials, 2010, 39, 1543-1548.	1.0	1
290	Improvements of Thermoelectric Performances in AgSbTe2 System With in-situ Ag2Te Nano-Precipitations. Materials Research Society Symposia Proceedings, 2010, 1267, 1.	0.1	1
291	Controllable synthesis of PbTe nanosheets via an alkaline hydrothermal method. , 2010, , .		1
292	Influence of Ag ₂ Te Doping on the Thermoelectric Properties of p-type Bi _{0.5} Sb _{1.5} Te ₃ Bulk Alloys. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2010, 25, 583-587.	0.6	1
293	SELF-ASSEMBLY OF BISMUTH SELENIDE TWO-DIMENSIONAL SUPERSTRUCTURE FROM HEXAGONAL NANOSHEETS. Functional Materials Letters, 2011, 04, 245-248.	0.7	0
294	RAPID SYNTHESIS OF CoSb3/GRAPHENE NANOCOMPOSITES BY ONE-POT SOLVOTHERMAL ROUTE AND THEIR ELECTROCHEMICAL PROPERTIES. Functional Materials Letters, 2012, 05, 1250002.	0.7	0
295	INTRODUCTION TO THE TOPICAL ISSUE ON THERMOELECTRIC MATERIALS AND DEVICES. Functional Materials Letters, 2013, 06, 1302001.	0.7	0