List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4247764/publications.pdf Version: 2024-02-01

		61857	46693
118	8,711	43	89
papers	citations	h-index	g-index
102	102	102	12517
125	125	125	15517
all docs	docs citations	times ranked	citing authors

EVAD ELKOPD

#	Article	IF	CITATIONS
1	Immune checkpoint inhibitors: recent progress and potential biomarkers. Experimental and Molecular Medicine, 2018, 50, 1-11.	3.2	1,410
2	Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Seminars in Cancer Biology, 2015, 35, S185-S198.	4.3	1,122
3	Significance of CD44 and CD24 as Cancer Stem Cell Markers: An Enduring Ambiguity. Clinical and Developmental Immunology, 2012, 2012, 1-11.	3.3	385
4	Regulatory T Cells in the Tumor Microenvironment and Cancer Progression: Role and Therapeutic Targeting. Vaccines, 2016, 4, 28.	2.1	372
5	Modulation of Lymphocyte Regulation for Cancer Therapy: A Phase II Trial of Tremelimumab in Advanced Gastric and Esophageal Adenocarcinoma. Clinical Cancer Research, 2010, 16, 1662-1672.	3.2	236
6	Phase II trial of imiquimod and HPV therapeutic vaccination in patients with vulval intraepithelial neoplasia. British Journal of Cancer, 2010, 102, 1129-1136.	2.9	225
7	Immune checkpoint inhibitors in cancer therapy: a focus on Tâ€regulatory cells. Immunology and Cell Biology, 2018, 96, 21-33.	1.0	225
8	Designing a broad-spectrum integrative approach for cancer prevention and treatment. Seminars in Cancer Biology, 2015, 35, S276-S304.	4.3	220
9	Myeloidâ€derived suppressor cells in cancer: recent progress and prospects. Immunology and Cell Biology, 2013, 91, 493-502.	1.0	196
10	Neuropilin 1: function and therapeutic potential in cancer. Cancer Immunology, Immunotherapy, 2014, 63, 81-99.	2.0	181
11	Frequency of regulatory T cells in renal cell carcinoma patients and investigation of correlation with survival. Cancer Immunology, Immunotherapy, 2007, 56, 1743-1753.	2.0	177
12	Acquired resistance to cancer immunotherapy: Role of tumor-mediated immunosuppression. Seminars in Cancer Biology, 2020, 65, 13-27.	4.3	170
13	FoxP3+ T regulatory cells in cancer: Prognostic biomarkers and therapeutic targets. Cancer Letters, 2020, 490, 174-185.	3.2	169
14	Tâ€cell responses and therapies against SARS oVâ€2 infection. Immunology, 2021, 162, 30-43.	2.0	159
15	Treg-mediated acquired resistance to immune checkpoint inhibitors. Cancer Letters, 2019, 457, 168-179.	3.2	148
16	Single-Cell Transcriptome Analysis Highlights a Role for Neutrophils and Inflammatory Macrophages in the Pathogenesis of Severe COVID-19. Cells, 2020, 9, 2374.	1.8	147
17	Immune checkpoints in the tumor microenvironment. Seminars in Cancer Biology, 2020, 65, 1-12.	4.3	146
18	Human monocyte isolation methods influence cytokine production from in vitro generated dendritic cells. Immunology, 2005, 114, 204-212.	2.0	134

#	Article	IF	CITATIONS
19	Increased Levels of Granulocytic Myeloid-Derived Suppressor Cells in Peripheral Blood and Tumour Tissue of Pancreatic Cancer Patients. Journal of Immunology Research, 2014, 2014, 1-9.	0.9	109
20	DNA methylation and repressive H3K9 and H3K27 trimethylation in the promoter regions of PD-1, CTLA-4, TIM-3, LAG-3, TIGIT, and PD-L1 genes in human primary breast cancer. Clinical Epigenetics, 2018, 10, 78.	1.8	103
21	Immune Checkpoints in Circulating and Tumor-Infiltrating CD4+ T Cell Subsets in Colorectal Cancer Patients. Frontiers in Immunology, 2019, 10, 2936.	2.2	97
22	Preferential accumulation of regulatory T cells with highly immunosuppressive characteristics in breast tumor microenvironment. Oncotarget, 2017, 8, 33159-33171.	0.8	96
23	T regulatory cells in cancer: recent advances and therapeutic potential. Expert Opinion on Biological Therapy, 2010, 10, 1573-1586.	1.4	94
24	Dual inhibition of STAT1 and STAT3 activation downregulates expression of PD-L1 in human breast cancer cells. Expert Opinion on Therapeutic Targets, 2018, 22, 547-557.	1.5	90
25	Clinical and Immunologic Results of a Phase II Trial of Sequential Imiquimod and Photodynamic Therapy for Vulval Intraepithelial Neoplasia. Clinical Cancer Research, 2008, 14, 5292-5299.	3.2	89
26	Helios, and not FoxP3, is the marker of activated Tregs expressing GARP/LAP. Oncotarget, 2015, 6, 20026-20036.	0.8	80
27	Expression of immune checkpoints and T cell exhaustion markers in early and advanced stages of colorectal cancer. Cancer Immunology, Immunotherapy, 2020, 69, 1989-1999.	2.0	75
28	Tremelimumab (anti-CTLA4) mediates immune responses mainly by direct activation of T effector cells rather than by affecting T regulatory cells. Clinical Immunology, 2011, 138, 85-96.	1.4	69
29	Salmonella-mediated tumor regression involves targeting of tumor myeloid suppressor cells causing a shift to M1-like phenotype and reduction in suppressive capacity. Cancer Immunology, Immunotherapy, 2014, 63, 587-599.	2.0	69
30	Intratumoral FoxP3+Helios+ Regulatory T Cells Upregulating Immunosuppressive Molecules Are Expanded in Human Colorectal Cancer. Frontiers in Immunology, 2017, 8, 619.	2.2	69
31	DNA methylation and repressive histones in the promoters of PD-1, CTLA-4, TIM-3, LAG-3, TIGIT, PD-L1, and galectin-9 genes in human colorectal cancer. Clinical Epigenetics, 2018, 10, 104.	1.8	68
32	Helios Should Not Be Cited as a Marker of Human Thymus-Derived Tregs. Commentary: Helios+ and Heliosâ^' Cells Coexist within the Natural FOXP3+ T Regulatory Cell Subset in Humans. Frontiers in Immunology, 2016, 7, 276.	2.2	64
33	Myeloid cells in circulation and tumor microenvironment of breast cancer patients. Cancer Immunology, Immunotherapy, 2017, 66, 753-764.	2.0	63
34	Long non-coding RNA (lncRNA) transcriptional landscape in breast cancer identifies LINC01614 as non-favorable prognostic biomarker regulated by TGFβ and focal adhesion kinase (FAK) signaling. Cell Death Discovery, 2019, 5, 109.	2.0	63
35	Breast Cancer Cells and PD-1/PD-L1 Blockade Upregulate the Expression of PD-1, CTLA-4, TIM-3 and LAG-3 Immune Checkpoints in CD4+ T Cells. Vaccines, 2019, 7, 149.	2.1	63
36	Increased Levels of Circulating and Tumor-Infiltrating Granulocytic Myeloid Cells in Colorectal Cancer Patients. Frontiers in Immunology, 2016, 7, 560.	2.2	58

#	Article	IF	CITATIONS
37	Role of Epigenetic Modifications in Inhibitory Immune Checkpoints in Cancer Development and Progression. Frontiers in Immunology, 2020, 11, 1469.	2.2	58
38	DNA methylation of immune checkpoints in the peripheral blood of breast and colorectal cancer patients. Oncolmmunology, 2019, 8, e1542918.	2.1	54
39	Frequency of human T regulatory cells in peripheral blood is significantly reduced by cryopreservation. Journal of Immunological Methods, 2009, 347, 87-90.	0.6	53
40	Transcriptomic profiling disclosed the role of DNA methylation and histone modifications in tumor-infiltrating myeloid-derived suppressor cell subsets in colorectal cancer. Clinical Epigenetics, 2020, 12, 13.	1.8	52
41	PD-L1 Blockade by Atezolizumab Downregulates Signaling Pathways Associated with Tumor Growth, Metastasis, and Hypoxia in Human Triple Negative Breast Cancer. Cancers, 2019, 11, 1050.	1.7	50
42	PD-L1 Expression in Human Breast Cancer Stem Cells Is Epigenetically Regulated through Posttranslational Histone Modifications. Journal of Oncology, 2019, 2019, 1-9.	0.6	48
43	An MVA-based Vaccine Targeting the Oncofetal Antigen 5T4 in Patients Undergoing Surgical Resection of Colorectal Cancer Liver Metastases. Journal of Immunotherapy, 2008, 31, 820-829.	1.2	45
44	Integrated Transcriptome and Pathway Analyses Revealed Multiple Activated Pathways in Breast Cancer. Frontiers in Oncology, 2019, 9, 910.	1.3	44
45	Therapeutic prospects of targeting myeloidâ€derived suppressor cells and immune checkpoints in cancer. Immunology and Cell Biology, 2018, 96, 888-897.	1.0	43
46	Expanded subpopulation of FoxP3+ T regulatory cells in renal cell carcinoma co-express Helios, indicating they could be derived from natural but not induced Tregs. Clinical Immunology, 2011, 140, 218-222.	1.4	42
47	<i>In-vitro</i> effect of pembrolizumab on different T regulatory cell subsets. Clinical and Experimental Immunology, 2018, 191, 189-197.	1.1	42
48	T Cell–Based Immunotherapy of Metastatic Renal Cell Carcinoma: Modest Success and Future Perspective. Clinical Cancer Research, 2009, 15, 6503-6510.	3.2	35
49	Adoptive transfer of Treg depleted autologous T cells in advanced renal cell carcinoma. Cancer Immunology, Immunotherapy, 2008, 57, 623-634.	2.0	34
50	Transcriptomic Analyses Revealed Systemic Alterations in Gene Expression in Circulation and Tumor Microenvironment of Colorectal Cancer Patients. Cancers, 2019, 11, 1994.	1.7	33
51	Immune evasion mechanisms in colorectal cancer liver metastasis patients vaccinated with TroVax (MVA-5T4). Cancer Immunology, Immunotherapy, 2009, 58, 1657-1667.	2.0	31
52	Combining FoxP3 and Helios with GARP/LAP markers can identify expanded Treg subsets in cancer patients. Oncotarget, 2016, 7, 14083-14094.	0.8	30
53	Phenotypic alterations, clinical impact and therapeutic potential of regulatory T cells in cancer. Expert Opinion on Biological Therapy, 2014, 14, 931-945.	1.4	28
54	Novel expression of Neuropilin 1 on human tumor-infiltrating lymphocytes in colorectal cancer liver metastases. Expert Opinion on Therapeutic Targets, 2015, 19, 147-161.	1.5	28

#	Article	IF	CITATIONS
55	Macrophage Inhibitory Cytokine-1: A review of its pleiotropic actions in cancer. Cancer Biomarkers, 2012, 11, 183-190.	0.8	27
56	Helios expression in FoxP3 ⁺ T regulatory cells. Expert Opinion on Biological Therapy, 2012, 12, 1423-1425.	1.4	27
57	Cd8 T-cell recognition of human 5T4 oncofetal antigen. International Journal of Cancer, 2006, 119, 1638-1647.	2.3	26
58	5T4 oncofetal antigen is expressed in high risk of relapse childhood pre-B acute lymphoblastic leukemia and is associated with a more invasive and chemotactic phenotype. Leukemia, 2012, 26, 1487-1498.	3.3	25
59	Differential gene expression of tumor-infiltrating CD8 ⁺ T cells in advanced versus early-stage colorectal cancer and identification of a gene signature of poor prognosis. , 2020, 8, e001294.		25
60	Metabolic reprogramming of T regulatory cells in the hypoxic tumor microenvironment. Cancer Immunology, Immunotherapy, 2021, 70, 2103-2121.	2.0	23
61	CD4+ T-cell recognition of human 5T4 oncofoetal antigen: implications for initial depletion of CD25+ T cells. Cancer Immunology, Immunotherapy, 2008, 57, 833-847.	2.0	22
62	SnoRNAs and miRNAs Networks Underlying COVID-19 Disease Severity. Vaccines, 2021, 9, 1056.	2.1	22
63	DNA methylation in the promoters of PD-L1, MMP9, ARG1, galectin-9, TIM-3, VISTA and TGF-β genes in HLA-DR [–] myeloid cells, compared with HLA-DR ⁺ antigen-presenting cells. Epigenetics, 2020, 15, 1275-1288.	1.3	21
64	An evaluation of sorter induced cell stress (SICS) on peripheral blood mononuclear cells (PBMCs) after different sort conditions - Are your sorted cells getting SICS?. Journal of Immunological Methods, 2020, 487, 112902.	0.6	19
65	Transcriptomic Profiling of Tumor-Infiltrating CD4+TIM-3+ T Cells Reveals Their Suppressive, Exhausted, and Metastatic Characteristics in Colorectal Cancer Patients. Vaccines, 2020, 8, 71.	2.1	19
66	Immunotherapy for gastrointestinal cancer: current status and strategies for improving efficacy. Expert Opinion on Biological Therapy, 2008, 8, 385-395.	1.4	18
67	Thymus-Derived, Peripherally Derived, and in vitro-Induced T Regulatory Cells. Frontiers in Immunology, 2014, 5, 17.	2.2	18
68	Effect of pembrolizumab on CD4+CD25+, CD4+LAP+ and CD4+TIM-3+ T cell subsets. Clinical and Experimental Immunology, 2019, 196, 345-352.	1.1	17
69	Pembrolizumab Interferes with the Differentiation of Human FOXP3+–Induced T Regulatory Cells, but Not with FOXP3 Stability, through Activation of mTOR. Journal of Immunology, 2020, 204, 199-211.	0.4	17
70	Immunological response and overall survival in a subset of advanced renal cell carcinoma patients from a randomized phase 2/3 study of naptumomab estafenatox plus IFN-α versus IFN-α. Oncotarget, 2015, 6, 4428-4439.	0.8	17
71	Role of Regulatory T Cells in Allergy: Implications for Therapeutic Strategy. Inflammation and Allergy: Drug Targets, 2006, 5, 211-217.	1.8	16
72	Synergistic Effects of Nanomedicine Targeting TNFR2 and DNA Demethylation Inhibitor—An Opportunity for Cancer Treatment. Cells, 2020, 9, 33.	1.8	16

#	Article	IF	CITATIONS
73	Targeting TIM-3 in solid tumors: innovations in the preclinical and translational realm and therapeutic potential. Expert Opinion on Therapeutic Targets, 2020, 24, 1251-1262.	1.5	16
74	Complement C5a and Clinical Markers as Predictors of COVID-19 Disease Severity and Mortality in a Multi-Ethnic Population. Frontiers in Immunology, 2021, 12, 707159.	2.2	16
75	Differential gene expression of tumor-infiltrating CD33+ myeloid cells in advanced- versus early-stage colorectal cancer. Cancer Immunology, Immunotherapy, 2021, 70, 803-815.	2.0	15
76	SARS-CoV-2 Infection and Lung Cancer: Potential Therapeutic Modalities. Cancers, 2020, 12, 2186.	1.7	14
77	Blockade of PD-1, PD-L1, and TIM-3 Altered Distinct Immune- and Cancer-Related Signaling Pathways in the Transcriptome of Human Breast Cancer Explants. Genes, 2020, 11, 703.	1.0	14
78	Inhibitory Immune Checkpoint Receptors and Ligands as Prognostic Biomarkers in COVID-19 Patients. Frontiers in Immunology, 2022, 13, 870283.	2.2	14
79	Differential CTLs specific for prostate-specific antigen in healthy donors and patients with prostate cancer. International Immunology, 2005, 17, 1315-1325.	1.8	13
80	Correlation between CD8+ T cells specific for prostate-specific antigen and level of disease in patients with prostate cancer. Clinical Immunology, 2006, 120, 91-98.	1.4	13
81	Circulating Regulatory T Cells in Endometrial Cancer: A Role for Age and Menopausal Status. Immunological Investigations, 2011, 40, 62-75.	1.0	12
82	Myeloid Cells in Circulation and Tumor Microenvironment of Colorectal Cancer Patients with Early and Advanced Disease Stages. Journal of Immunology Research, 2020, 2020, 1-10.	0.9	12
83	Differential expression of TIM-3 in circulation and tumor microenvironment of colorectal cancer patients. Clinical Immunology, 2020, 215, 108429.	1.4	12
84	Immunology and immunotherapy approaches for prostate cancer. Prostate Cancer and Prostatic Diseases, 2007, 10, 224-236.	2.0	11
85	Epigenetic regulation of immune checkpoints and TÂcell exhaustion markers in tumor-infiltrating T cells of colorectal cancer patients. Epigenomics, 2020, 12, 1871-1882.	1.0	11
86	Tumor-Infiltrating Lymphoid Cells in Colorectal Cancer Patients with Varying Disease Stages and Microsatellite Instability-High/Stable Tumors. Vaccines, 2021, 9, 64.	2.1	11
87	Comparison of Myeloid Cells in Circulation and in the Tumor Microenvironment of Patients with Colorectal and Breast Cancers. Journal of Immunology Research, 2017, 2017, 1-8.	0.9	10
88	Investigation of the Effect of PD-L1 Blockade on Triple Negative Breast Cancer Cells Using Fourier Transform Infrared Spectroscopy. Vaccines, 2019, 7, 109.	2.1	10
89	Role of circular RNAs in colorectal tumor microenvironment. Biomedicine and Pharmacotherapy, 2021, 137, 111351.	2.5	10
90	T-Regulatory Cells in Health and Disease. Journal of Immunology Research, 2018, 2018, 1-2.	0.9	9

#	Article	IF	CITATIONS
91	Comment on "Expression of Helios in Peripherally Induced Foxp3+ Regulatory T Cells― Journal of Immunology, 2012, 189, 500.1-500.	0.4	8
92	RNA-Seq Analysis of Colorectal Tumor-Infiltrating Myeloid-Derived Suppressor Cell Subsets Revealed Gene Signatures of Poor Prognosis. Frontiers in Oncology, 2020, 10, 604906.	1.3	8
93	Circulating and Tumor-Infiltrating Immune Checkpoint-Expressing CD8+ Treg/T Cell Subsets and Their Associations with Disease-Free Survival in Colorectal Cancer Patients. Cancers, 2022, 14, 3194.	1.7	8
94	5T4 as a target for immunotherapy in renal cell carcinoma. Expert Review of Anticancer Therapy, 2009, 9, 1705-1709.	1.1	7
95	In vitroeffect of IL-2 in combination with pazopanib or sunitinib on lymphocytes function and apoptosis of RCC cells. Expert Opinion on Pharmacotherapy, 2014, 15, 1489-1499.	0.9	7
96	Transcriptomic Analyses of Myeloid-Derived Suppressor Cell Subsets in the Circulation of Colorectal Cancer Patients. Frontiers in Oncology, 2020, 10, 1530.	1.3	7
97	Integrated whole transcriptome and small RNA analysis revealed multiple regulatory networks in colorectal cancer. Scientific Reports, 2021, 11, 14456.	1.6	7
98	Associations of different immune checkpoints-expressing CD4+ Treg/ T cell subsets with disease-free survival in colorectal cancer patients. BMC Cancer, 2022, 22, .	1.1	7
99	Differential gene expression of tumor-infiltrating CD4 ⁺ T cells in advanced versus early stage colorectal cancer and identification of a gene signature of poor prognosis. Oncolmmunology, 2020, 9, 1825178.	2.1	6
100	Exosomes: Biological Carriers and Promising Tools for Cancer Immunotherapy. Vaccines, 2020, 8, 390.	2.1	5
101	Transcriptome of Tumor-Infiltrating T Cells in Colorectal Cancer Patients Uncovered a Unique Gene Signature in CD4+ T Cells Associated with Poor Disease-Specific Survival. Vaccines, 2021, 9, 334.	2.1	5
102	Role of T Regulatory Cells and Myeloid-Derived Suppressor Cells in COVID-19. Journal of Immunology Research, 2022, 2022, 1-13.	0.9	5
103	Bead-isolated human CD4+CD25+ T regulatory cells are anergic and significantly suppress proliferation of CD4+CD25â°' T responder cells. Clinical Immunology, 2006, 120, 232-233.	1.4	4
104	Associations of Complete Blood Count Parameters with Disease-Free Survival in Right- and Left-Sided Colorectal Cancer Patients. Journal of Personalized Medicine, 2022, 12, 816.	1.1	4
105	Novel Therapeutic Strategies by Regulatory T Cells in Allergy. Chemical Immunology and Allergy, 2008, 94, 150-157.	1.7	3
106	Downregulation of Immunosuppressive Environment in Patients with Chronic HBV Hepatitis on Maintained Remission. Frontiers in Immunology, 2015, 6, 52.	2.2	3
107	Transcriptome of CD8+ tumor-infiltrating T cells: a link between diabetes and colorectal cancer. Cancer Immunology, Immunotherapy, 2021, 70, 2625-2638.	2.0	3
108	Editorial: CD4+ T Cells in Cancer Immunotherapies. Frontiers in Immunology, 2021, 12, 737615.	2.2	3

#	Article	IF	CITATIONS
109	Novel IFNγ ELISPOT Assay for Detection of Functional Carcinoembryonic Antigen‧pecific Chimeric Antigen Receptorâ€Redirected T Cells. Scandinavian Journal of Immunology, 2011, 74, 419-422.	1.3	2
110	Editorial of Harnessing the Power of T Cells: The Promising Hope for a Universal Influenza Vaccine. Vaccines, 2020, 8, 376.	2.1	2
111	Transcriptomic Profiling of Circulating HLA-DR [–] Myeloid Cells, Compared with HLA-DR ⁺ Myeloid Antigen-presenting Cells. Immunological Investigations, 2021, 50, 952-963.	1.0	2
112	Correlations between Circulating and Tumor-Infiltrating CD4+ T Cell Subsets with Immune Checkpoints in Colorectal Cancer. Vaccines, 2022, 10, 538.	2.1	2
113	F.134. Increased Population of CD4+CD25high Regulatory T-Cells in the Peripheral Blood of Renal Cell Carcinoma Patients. Clinical Immunology, 2006, 119, S98.	1.4	0
114	A combination of T regulatory cell-specific markers to determine the expanded subsets in cancer patients. European Journal of Cancer, 2016, 61, S209.	1.3	0
115	Intrinsic and acquired cancer immunotherapy resistance. , 2022, , 463-497.		0
116	Abstract 3632: Targeting of tumor myeloid suppressor cells by Salmonella bacteria causes a shift to M1 phenotype and leads to inhibition of tumor growth. , 2014, , .		0
117	Combining FoxP3 and Helios with GARP/LAP markers to identify expanded Treg subsets in cancer patients Journal of Clinical Oncology, 2016, 34, e23118-e23118.	0.8	0
118	Abstract 4102: DNA methylation and repressive histones in the promoters of immune checkpoints in tumor tissues and peripheral blood of breast and colorectal cancer patients. , 2019, , .		0