Krzysztof Pyrc

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4247653/publications.pdf

Version: 2024-02-01

70961 46693 8,850 112 41 89 citations h-index g-index papers 124 124 124 13769 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Acriflavine, a clinically approved drug, inhibits SARS-CoV-2 and other betacoronaviruses. Cell Chemical Biology, 2022, 29, 774-784.e8.	2.5	34
2	Self-Organized Nanoparticles of Random and Block Copolymers of Sodium 2-(Acrylamido)-2-methyl-1-propanesulfonate and Sodium 11-(Acrylamido)undecanoate as Safe and Effective Zika Virus Inhibitors. Pharmaceutics, 2022, 14, 309.	2.0	3
3	Zoonotic spill-over of SARS-CoV-2: mink-adapted virus in humans. Clinical Microbiology and Infection, 2022, 28, 451.e1-451.e4.	2.8	24
4	Performance of electrochemical immunoassays for clinical diagnostics of SARS-CoV-2 based on selective nucleocapsid N protein detection: Boron-doped diamond, gold and glassy carbon evaluation. Biosensors and Bioelectronics, 2022, 209, 114222.	5.3	23
5	Vaccination versus SARS-CoV-2 Omicron: three vaccine doses win the battle. Signal Transduction and Targeted Therapy, 2022, 7, 140.	7.1	2
6	Pseudanabaena galeata CCNP1313â€"Biological Activity and Peptides Production. Toxins, 2022, 14, 330.	1.5	2
7	Refolding of lid subdomain of SARS-CoV-2Ânsp14 upon nsp10 interaction releases exonuclease activity. Structure, 2022, 30, 1050-1054.e2.	1.6	20
8	Human Intramuscular Hyperimmune Gamma Globulin (hIHGG) Anti-SARS-CoV-2â€"Characteristics of Intermediates and Final Product. Viruses, 2022, 14, 1328.	1.5	2
9	SARS-CoV-2 infects an inÂvitro model of the human developing pancreas through endocytosis. IScience, 2022, 25, 104594.	1.9	7
10	Characterization of SARS-CoV-2 replication complex elongation and proofreading activity. Scientific Reports, 2022, 12, .	1.6	9
11	HTCC as a Polymeric Inhibitor of SARS-CoV-2 and MERS-CoV. Journal of Virology, 2021, 95, .	1.5	64
12	Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): a Systemic Infection. Clinical Microbiology Reviews, 2021, 34, .	5.7	136
13	Endosomal compartmentation and the transport route of Zika virus., 2021,, 419-430.		O
14	The Strategies to Support the COVID-19 Vaccination with Evidence-Based Communication and Tackling Misinformation. Vaccines, 2021, 9, 109.	2.1	97
15	Al Aided Design of Epitope-Based Vaccine for the Induction of Cellular Immune Responses Against SARS-CoV-2. Frontiers in Genetics, 2021, 12, 602196.	1.1	5
16	Antiviral Cyanometabolites—A Review. Biomolecules, 2021, 11, 474.	1.8	24
17	Can we define CD3+CD56+ cells as NKT cells with impunity?. Clinical Immunology, 2021, 226, 108708.	1.4	2
18	Tuning the Surface Properties of Poly(Allylamine Hydrochloride)-Based Multilayer Films. Materials, 2021, 14, 2361.	1.3	9

#	Article	IF	Citations
19	Seleno-Functionalization of Quercetin Improves the Non-Covalent Inhibition of Mpro and Its Antiviral Activity in Cells against SARS-CoV-2. International Journal of Molecular Sciences, 2021, 22, 7048.	1.8	44
20	First Lung Transplantation As A Treatment of A Patient Supported with Extracorporeal Membrane Oxygenation (ECMO) after COVID-19 in Poland. Advances in Respiratory Medicine, 2021, 89, 328-333.	0.5	7
21	Mass Spectrometry versus Conventional Techniques of Protein Detection: Zika Virus NS3 Protease Activity towards Cellular Proteins. Molecules, 2021, 26, 3732.	1.7	1
22	Ozone Treatment Is Insufficient to Inactivate SARS-CoV-2 Surrogate under Field Conditions. Antioxidants, 2021, 10, 1480.	2.2	9
23	Expansion of a SARS-CoV-2 Delta variant with an 872 nt deletion encompassing ORF7a, ORF7b and ORF8, Poland, July to August 2021. Eurosurveillance, 2021, 26, .	3.9	24
24	SARS-CoV-2 inhibition using a mucoadhesive, amphiphilic chitosan that may serve as an anti-viral nasal spray. Scientific Reports, 2021, 11, 20012.	1.6	31
25	l-Arginine Improves Solubility and ANTI SARS-CoV-2 Mpro Activity of Rutin but Not the Antiviral Activity in Cells. Molecules, 2021, 26, 6062.	1.7	4
26	Functional Severe Acute Respiratory Syndrome Coronavirus 2 Virus-Like Particles From Insect Cells. Frontiers in Microbiology, 2021, 12, 732998.	1.5	11
27	Identification of Cellular Factors Required for SARS-CoV-2 Replication. Cells, 2021, 10, 3159.	1.8	8
28	MASS SPECTROMETRY IN VIROLOGICAL SCIENCES. Mass Spectrometry Reviews, 2020, 39, 499-522.	2.8	22
29	Electrochemical Immunosensors Based on Screen-Printed Gold and Glassy Carbon Electrodes: Comparison of Performance for Respiratory Syncytial Virus Detection. Biosensors, 2020, 10, 175.	2.3	16
30	Battle at the entrance gate: CIITA as a weapon to prevent the internalization of SARS-CoV-2 and Ebola viruses. Signal Transduction and Targeted Therapy, 2020, 5, 278.	7.1	7
31	Kallikrein 13 serves as a priming protease during infection by the human coronavirus HKU1. Science Signaling, 2020, 13, .	1.6	10
32	In Vitro Inhibition of Zika Virus Replication with Poly(Sodium 4-Styrenesulfonate). Viruses, 2020, 12, 926.	1.5	3
33	Angiotensin converting enzyme: A review on expression profile and its association with human disorders with special focus on SARS-CoV-2 infection. Vascular Pharmacology, 2020, 130, 106680.	1.0	44
34	Effects of host genetic variations on response to, susceptibility and severity of respiratory infections. Biomedicine and Pharmacotherapy, 2020, 128, 110296.	2.5	50
35	Replication of Severe Acute Respiratory Syndrome Coronavirus 2 in Human Respiratory Epithelium. Journal of Virology, 2020, 94, .	1.5	51
36	Berberine Hampers Influenza A Replication through Inhibition of MAPK/ERK Pathway. Viruses, 2020, 12, 344.	1.5	18

#	Article	IF	CITATIONS
37	Effectiveness of Lung Transplantation in Patients With Interstitial Lung Diseases. Transplantation Proceedings, 2020, 52, 2143-2148.	0.3	1
38	Altered cytokine levels and immune responses in patients with SARS-CoV-2 infection and related conditions. Cytokine, 2020, 133, 155143.	1.4	64
39	The SARS-CoV-2 ORF10 is not essential in vitro or in vivo in humans. PLoS Pathogens, 2020, 16, e1008959.	2.1	71
40	Visualization of SARS-CoV-2 using Immuno RNA-Fluorescence In Situ Hybridization. Journal of Visualized Experiments, 2020, , .	0.2	7
41	Visualizing Coronavirus Entry into Cells. Methods in Molecular Biology, 2020, 2203, 241-261.	0.4	0
42	Cat flu: Broad spectrum polymeric antivirals. Antiviral Research, 2019, 170, 104563.	1.9	12
43	Membrane Protein of Human Coronavirus NL63 Is Responsible for Interaction with the Adhesion Receptor. Journal of Virology, 2019, 93, .	1.5	60
44	Highly Effective and Safe Polymeric Inhibitors of Herpes Simplex Virus in Vitro and in Vivo. ACS Applied Materials & Samp; Interfaces, 2019, 11, 26745-26752.	4.0	10
45	Detection of legal highs in the urine of methadoneâ€treated patient by LCâ€MS. Basic and Clinical Pharmacology and Toxicology, 2019, 125, 253-258.	1.2	3
46	Zika virus: mapping and reprogramming the entry. Cell Communication and Signaling, 2019, 17, 41.	2.7	22
47	Canine Respiratory Coronavirus, Bovine Coronavirus, and Human Coronavirus OC43: Receptors and Attachment Factors. Viruses, 2019, 11, 328.	1.5	63
48	Synthetic sulfonated derivatives of poly(allylamine hydrochloride) as inhibitors of human metapneumovirus. PLoS ONE, 2019, 14, e0214646.	1.1	17
49	Phosphonate inhibitors of West Nile virus NS2B/NS3 protease. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 8-14.	2.5	14
50	APOBEC3-mediated restriction of RNA virus replication. Scientific Reports, 2018, 8, 5960.	1.6	103
51	Entry of Human Coronavirus NL63 into the Cell. Journal of Virology, 2018, 92, .	1.5	162
52	Novel coronavirus-like particles targeting cells lining the respiratory tract. PLoS ONE, 2018, 13, e0203489.	1.1	36
53	One Step Beyond: Design of Substrates Spanning Primed Positions of Zika Virus NS2B-NS3 Protease. ACS Medicinal Chemistry Letters, 2018, 9, 1025-1029.	1.3	8
54	Canine respiratory coronavirus employs caveolin-1-mediated pathway for internalization to HRT-18G cells. Veterinary Research, 2018, 49, 55.	1.1	31

#	Article	IF	Citations
55	Early events during human coronavirus OC43 entry to the cell. Scientific Reports, 2018, 8, 7124.	1.6	101
56	07.14â€Novel polymorphism of peptidylarginine deiminase from p. gingivalis augments bacterial pathogenicity and severity of periodontitis. , 2017, , .		0
57	Structural Characterization of Human Coronavirus NL63 N Protein. Journal of Virology, 2017, 91, .	1.5	28
58	Biopolymeric nano/microspheres for selective and reversible adsorption of coronaviruses. Materials Science and Engineering C, 2017, 76, 735-742.	3.8	51
59	Inhibition of Herpes Simplex Viruses by Cationic Dextran Derivatives. Journal of Medicinal Chemistry, 2017, 60, 8620-8630.	2.9	14
60	Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) RNAs in the Porphyromonas gingivalis CRISPR-Cas I-C System. Journal of Bacteriology, 2017, 199, .	1.0	6
61	Novel peptidyl α-aminoalkylphosphonates as inhibitors of hepatitis C virus NS3/4A protease. Antiviral Research, 2017, 144, 286-298.	1.9	5
62	Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Science Translational Medicine, 2017, 9, .	5.8	1,279
63	Small-molecule inhibitors of PD-1/PD-L1 immune checkpoint alleviate the PD-L1-induced exhaustion of T-cells. Oncotarget, 2017, 8, 72167-72181.	0.8	221
64	Substrate profiling of Zika virus <scp>NS</scp> 2Bâ€ <scp>NS</scp> 3 protease. FEBS Letters, 2016, 590, 3459-3468.	1.3	45
65	Gingipains: Critical Factors in the Development of Aspiration Pneumonia Caused by & lt;b> <i>Porphyromonas gingivalis</i> . Journal of Innate Immunity, 2016, 8, 185-198.	1.8	62
66	In search for effective and definitive treatment of herpes simplex virus type 1 (HSV-1) infections. RSC Advances, 2016 , 6 , $1058-1075$.	1.7	17
67	Novel Polyanions Inhibiting Replication of Influenza Viruses. Antimicrobial Agents and Chemotherapy, 2016, 60, 1955-1966.	1.4	14
68	HTCC: Broad Range Inhibitor of Coronavirus Entry. PLoS ONE, 2016, 11, e0156552.	1.1	67
69	Type III CRISPR complexes from Thermus thermophilus Acta Biochimica Polonica, 2016, 63, 377-86.	0.3	1
70	The Nucleocapsid Protein of Human Coronavirus NL63. PLoS ONE, 2015, 10, e0117833.	1.1	23
71	Functional Analysis of Porphyromonas gingivalis W83 CRISPR-Cas Systems. Journal of Bacteriology, 2015, 197, 2631-2641.	1.0	18
72	Human Coronavirus HKU1 Spike Protein Uses <i>O</i> -Acetylated Sialic Acid as an Attachment Receptor Determinant and Employs Hemagglutinin-Esterase Protein as a Receptor-Destroying Enzyme. Journal of Virology, 2015, 89, 7202-7213.	1.5	218

#	Article	IF	CITATIONS
73	The inhibitory effect of secretory leukocyte protease inhibitor (SLPI) on formation of neutrophil extracellular traps. Journal of Leukocyte Biology, 2015, 98, 99-106.	1.5	72
74	Virus Like Particles as Immunogens and Universal Nanocarriers. Polish Journal of Microbiology, 2015, 64, 3-13.	0.6	52
75	CRISPR-Cas Systems in Prokaryotes. Polish Journal of Microbiology, 2015, 64, 193-202.	0.6	20
76	Virus Like Particles as Immunogens and Universal Nanocarriers. Polish Journal of Microbiology, 2015, 64, 3-13.	0.6	21
77	Citrullination Alters Immunomodulatory Function of LL-37 Essential for Prevention of Endotoxin-Induced Sepsis. Journal of Immunology, 2014, 192, 5363-5372.	0.4	59
78	Human Coronavirus NL63 Utilizes Heparan Sulfate Proteoglycans for Attachment to Target Cells. Journal of Virology, 2014, 88, 13221-13230.	1.5	257
79	Stability of infectious human coronavirus NL63. Journal of Virological Methods, 2014, 205, 87-90.	1.0	9
80	Novel polymeric inhibitors of HCoV-NL63. Antiviral Research, 2013, 97, 112-121.	1.9	66
81	HexaPrime: A novel method for detection of coronaviruses. Journal of Virological Methods, 2013, 188, 29-36.	1.0	0
82	<i>Staphylococcus aureus</i> Proteases Degrade Lung Surfactant Protein A Potentially Impairing Innate Immunity of the Lung. Journal of Innate Immunity, 2013, 5, 251-260.	1.8	36
83	Porphyromonas gingivalis Facilitates the Development and Progression of Destructive Arthritis through Its Unique Bacterial Peptidylarginine Deiminase (PAD). PLoS Pathogens, 2013, 9, e1003627.	2.1	212
84	Inactivation of Epidermal Growth Factor by Porphyromonas gingivalis as a Potential Mechanism for Periodontal Tissue Damage. Infection and Immunity, 2013, 81, 55-64.	1.0	46
85	Replication-dependent downregulation of cellular angiotensin-converting enzyme 2 protein expression by human coronavirus NL63. Journal of General Virology, 2012, 93, 1924-1929.	1.3	128
86	Use of Sensitive, Broad-Spectrum Molecular Assays and Human Airway Epithelium Cultures for Detection of Respiratory Pathogens. PLoS ONE, 2012, 7, e32582.	1.1	11
87	Bacterial Proteases in Disease – Role in Intracellular Survival, Evasion of Coagulation/ Fibrinolysis Innate Defenses, Toxicoses and Viral Infections. Current Pharmaceutical Design, 2012, 19, 1090-1113.	0.9	23
88	Development of loop-mediated isothermal amplification assay for detection of human coronavirus-NL63. Journal of Virological Methods, 2011, 175, 133-136.	1.0	40
89	Porphyromonas gingivalis enzymes enhance infection with human metapneumovirus in vitro. Journal of General Virology, 2011, 92, 2324-2332.	1.3	6
90	Infection with human coronavirus NL63 enhances streptococcal adherence to epithelial cells. Journal of General Virology, 2011, 92, 1358-1368.	1.3	44

#	Article	IF	CITATIONS
91	Culturing the Unculturable: Human Coronavirus HKU1 Infects, Replicates, and Produces Progeny Virions in Human Ciliated Airway Epithelial Cell Cultures. Journal of Virology, 2010, 84, 11255-11263.	1.5	120
92	Human Parechovirus Type 1, 3, 4, 5, and 6 Detection in Picornavirus Cultures. Journal of Clinical Microbiology, 2008, 46, 759-762.	1.8	53
93	Human Coronavirus NL63 and 229E Seroconversion in Children. Journal of Clinical Microbiology, 2008, 46, 2368-2373.	1.8	171
94	Recent antiviral strategies against human coronavirus-related respiratory illnesses. Current Opinion in Pulmonary Medicine, 2008, 14, 248-253.	1.2	10
95	Detection of New Viruses by VIDISCA. Methods in Molecular Biology, 2008, 454, 73-89.	0.4	27
96	Identification of new human coronaviruses. Expert Review of Anti-Infective Therapy, 2007, 5, 245-253.	2.0	90
97	Antiviral Strategies Against Human Coronaviruses. Infectious Disorders - Drug Targets, 2007, 7, 59-66.	0.4	27
98	The Novel Human Coronaviruses NL63 and HKU1. Journal of Virology, 2007, 81, 3051-3057.	1.5	210
99	Human coronavirus 229E encodes a single ORF4 protein between the spike and the envelope genes. Virology Journal, 2006, 3, 106.	1.4	37
100	Mosaic Structure of Human Coronavirus NL63, One Thousand Years of Evolution. Journal of Molecular Biology, 2006, 364, 964-973.	2.0	149
101	Human coronavirus NL63, a new respiratory virus. FEMS Microbiology Reviews, 2006, 30, 760-773.	3.9	163
102	Identification of cell lines permissive for human coronavirus NL63. Journal of Virological Methods, 2006, 138, 207-210.	1.0	41
103	Inhibition of Human Coronavirus NL63 Infection at Early Stages of the Replication Cycle. Antimicrobial Agents and Chemotherapy, 2006, 50, 2000-2008.	1.4	113
104	Attachment Factor and Receptor Engagement of Sars Coronavirus and Human Coronavirus NL63. Advances in Experimental Medicine and Biology, 2006, 581, 219-227.	0.8	8
105	Interaction Between the Spike Protein of Human Coronavirus NL63 and its Cellular Receptor ACE2. Advances in Experimental Medicine and Biology, 2006, 581, 281-284.	0.8	21
106	Human Coronavirus NL63 Infection is Associated with Croup. Advances in Experimental Medicine and Biology, 2006, 581, 485-491.	0.8	27
107	Nonstructural Proteins of Human Coronavirus NL63. Advances in Experimental Medicine and Biology, 2006, 581, 97-100.	0.8	0
108	A novel pancoronavirus RT-PCR assay: frequent detection of human coronavirus NL63 in children hospitalized with respiratory tract infections in Belgium. BMC Infectious Diseases, 2005, 5, 6.	1.3	143

#	Article	IF	CITATIONS
109	Croup Is Associated with the Novel Coronavirus NL63. PLoS Medicine, 2005, 2, e240.	3.9	239
110	Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7988-7993.	3.3	679
111	Identification of a new human coronavirus. Nature Medicine, 2004, 10, 368-373.	15.2	1,573
112	Genome structure and transcriptional regulation of human coronavirus NL63. Virology Journal, 2004, 1, 7.	1.4	104