Barbara Camisa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4247397/publications.pdf Version: 2024-02-01

RADRADA CAMISA

#	Article	IF	CITATIONS
1	Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nature Medicine, 2018, 24, 739-748.	15.2	947
2	IL-7 and IL-15 instruct the generation of human memory stem T cells from naive precursors. Blood, 2013, 121, 573-584.	0.6	455
3	Editing T cell specificity towards leukemia by zinc finger nucleases and lentiviral gene transfer. Nature Medicine, 2012, 18, 807-815.	15.2	398
4	Macrophages Are Alternatively Activated in Patients with Endometriosis and Required for Growth and Vascularization of Lesions in a Mouse Model of Disease. American Journal of Pathology, 2009, 175, 547-556.	1.9	319
5	CD44v6-targeted T cells mediate potent antitumor effects against acute myeloid leukemia and multiple myeloma. Blood, 2013, 122, 3461-3472.	0.6	306
6	The selective vitamin D receptor agonist, elocalcitol, reduces endometriosis development in a mouse model by inhibiting peritoneal inflammation. Human Reproduction, 2012, 27, 2010-2019.	0.4	89
7	Extracellular NGFR Spacers Allow Efficient Tracking and Enrichment of Fully Functional CAR-T Cells Co-Expressing a Suicide Gene. Frontiers in Immunology, 2018, 9, 507.	2.2	73
8	NY-ESO-1 TCR single edited stem and central memory T cells to treat multiple myeloma without graft-versus-host disease. Blood, 2017, 130, 606-618.	0.6	71
9	Next-Generation Manufacturing Protocols Enriching TSCM CAR T Cells Can Overcome Disease-Specific T Cell Defects in Cancer Patients. Frontiers in Immunology, 2020, 11, 1217.	2.2	69
10	CAR T cell manufacturing from naive/stem memory T lymphocytes enhances antitumor responses while curtailing cytokine release syndrome. Journal of Clinical Investigation, 2022, 132, .	3.9	66
11	The IL-1/IL-1 receptor axis and tumor cell released inflammasome adaptor ASC are key regulators of TSLP secretion by cancer associated fibroblasts in pancreatic cancer. , 2019, 7, 45.		54
12	Disrupting N-glycan expression on tumor cells boosts chimeric antigen receptor T cell efficacy against solid malignancies. Science Translational Medicine, 2022, 14, eabg3072.	5.8	47
13	IL-10-Engineered Human CD4+ Tr1 Cells Eliminate Myeloid Leukemia in an HLA Class I-Dependent Mechanism. Molecular Therapy, 2017, 25, 2254-2269.	3.7	40
14	Interferon gene therapy reprograms the leukemia microenvironment inducing protective immunity to multiple tumor antigens. Nature Communications, 2018, 9, 2896.	5.8	39
15	Graft-versus-leukemia Effect of HLA-haploidentical Central-memory T-cells Expanded With Leukemic APCs and Modified With a Suicide Gene. Molecular Therapy, 2013, 21, 466-475.	3.7	23
16	CRISPR-based gene disruption and integration of high-avidity, WT1-specific T cell receptors improve antitumor T cell function. Science Translational Medicine, 2022, 14, eabg8027.	5.8	21
17	Inter-species differences in sensitivity to the calcemic activity of the novel 1,25-dihydroxyvitamin D3 analog BXL746. Regulatory Toxicology and Pharmacology, 2008, 52, 332-341.	1.3	6
18	CD44v6 Is Required For In Vivo Tumorigenesis Of Human AML and MM Cells: Role Of Microenvironmental Signals and Therapeutic Implications. Blood, 2013, 122, 605-605.	0.6	6

BARBARA CAMISA

#	Article	IF	CITATIONS
19	Modeling Human Graft-Versus-Host Disease in Immunocompromised Mice. Methods in Molecular Biology, 2016, 1393, 127-132.	0.4	4
20	Co-Expression of a Suicide Gene in CAR-Redirected T Cells Enables the Safe Targeting of CD44v6 for Leukemia and Myeloma Eradication. Blood, 2012, 120, 949-949.	0.6	3
21	Off-Tumor Target Expression Levels Do Not Predict CAR-T Cell Killing: A Foundation For The Safety Of CD44v6-Targeted T Cells. Blood, 2013, 122, 142-142.	0.6	2
22	Memory T Cells Masquerading as Nail^ve Cells: Implications on Adoptive T Cell Immunotherapy Blood, 2010, 116, 1471-1471.	0.6	1
23	TCR Gene Editing Results in Effective Immunotherapy of Leukemia without the Development of GvHD. Blood, 2011, 118, 667-667.	0.6	1
24	Dual Transgenesis of T Cells with a Novel CD44v6-Specific Chimeric Antigen Receptor and a Suicide Gene for Safe and Effective Targeting of Chemoresistance in Hematopoietic Tumors. Blood, 2011, 118, 3125-3125.	0.6	1
25	Modeling Antileukemic Adoptive Immunotherapy In Mouse-Humans Chimeras To Identify Novel Mechanisms Of Cancer Immunoediting. Blood, 2013, 122, 2017-2017.	0.6	1
26	Monocytes Are Required for Both Optimal Anti-Leukemic Efficacy and the Cytokine Release Syndrome By CAR-T Cells: Lessons from an Innovative Xenotolerant Mouse Model. Blood, 2016, 128, 997-997.	0.6	1
27	Combining De-Glycosylating Agents with CAR-T Cells for Targeting Solid Tumors and Reducing Toxicity. Blood, 2018, 132, 4544-4544.	0.6	1
28	414. CAR Spacers Including NGFR Domains Allow Efficient T-Cell Tracking and Mediate Superior Antitumor Effects. Molecular Therapy, 2015, 23, S163-S164.	3.7	0
29	716. Durable Acute Myeloid Leukemia Remission Without Myeloablation in an Innovative Xenotolerant Mouse Model of CD44v6 CAR-T Cell Immunotherapy. Molecular Therapy, 2015, 23, S286.	3.7	Ο
30	209. TCR Gene Editing in a Single Step of T Cell Activation To Redirect T Cell Specificity and Prevent GvHD. Molecular Therapy, 2015, 23, S82-S83.	3.7	0
31	637. Targeting of Myeloid Leukemia by IL-10-Engineered Human CD4+ Tr1 Cells. Molecular Therapy, 2016, 24, S252.	3.7	Ο
32	752. Single Chain TCR Gene Editing in Adoptive Cell Therapy for Multiple Myeloma. Molecular Therapy, 2016, 24, S297.	3.7	0
33	512. The Cytokine Release Syndrome Crucially Contributes to the Anti-Leukemic Effects of CD44v6 CAR-T Cells. Molecular Therapy, 2016, 24, S204.	3.7	Ο
34	Genomic and Transcriptional Immunoediting of Acute Myeloid Leukemia in Response to Allogeneic Hematopoietic Stem Cell Transplantation. Blood, 2011, 118, 329-329.	0.6	0
35	NY-ESO-1 Single Edited T Cells to Treat Multiple Myeloma without Inducing GvHD. Blood, 2014, 124, 308-308.	0.6	0
36	Clinical and Biological Features Associated with Engraftment of Acute Myeloid Leukemia Patient-Derived Xenografts. Blood, 2016, 128, 2858-2858.	0.6	0