
William D Hutchison

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4247057/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Clinical neurophysiology of Parkinson's disease and parkinsonism. Clinical Neurophysiology Practice, 2022, 7, 201-227.	0.6	28
2	Single unit and beta oscillatory activities in subthalamic nucleus are modulated during visual choice preference. European Journal of Neuroscience, 2021, 53, 2220-2233.	1.2	9
3	Microelectrode Recording and Radiofrequency Thalamotomy following Focused Ultrasound Thalamotomy. Stereotactic and Functional Neurosurgery, 2021, 99, 34-37.	0.8	3
4	Motor blocks during bilateral stepping in Parkinson's disease and effects of dopaminergic medication. Parkinsonism and Related Disorders, 2021, 85, 1-4.	1.1	0
5	Kilohertz-frequency stimulation of the nervous system: A review of underlying mechanisms. Brain Stimulation, 2021, 14, 513-530.	0.7	37
6	Acute low frequency dorsal subthalamic nucleus stimulation improves verbal fluency in Parkinson's disease. Brain Stimulation, 2021, 14, 754-760.	0.7	12
7	A theoretical framework for the site-specific and frequency-dependent neuronal effects of deep brain stimulation. Brain Stimulation, 2021, 14, 807-821.	0.7	24
8	Neurophysiological responses of globus pallidus internus during the auditory oddball task in Parkinson's disease. Neurobiology of Disease, 2021, 159, 105490.	2.1	7
9	The Association of Dexmedetomidine with Firing Properties in Pallidal Neurons. Canadian Journal of Neurological Sciences, 2021, 48, 525-533.	0.3	3
10	Complete resolution of postherpetic neuralgia following pallidotomy: case report. Journal of Neurosurgery, 2020, 133, 1229-1234.	0.9	4
11	Beta, gamma and High-Frequency Oscillation characterization for targeting in Deep Brain Stimulation procedures. Tecno LA ³ gicas, 2020, 23, 11-32.	0.1	0
12	Case Studies in Neuroscience: Lack of inhibitory synaptic plasticity in the substantia nigra pars reticulata of a patient with lithium-induced tremor. Journal of Neurophysiology, 2019, 122, 1367-1372.	0.9	3
13	Subthalamic suppression defines therapeutic threshold of deep brain stimulation in Parkinson's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 1105-1108.	0.9	16
14	Modulation of inhibitory plasticity in basal ganglia output nuclei of patients with Parkinson's disease. Neurobiology of Disease, 2019, 124, 46-56.	2.1	26
15	Successful pallidotomy for post-hyperglycemic hemichorea-ballism. Parkinsonism and Related Disorders, 2019, 61, 228-230.	1.1	6
16	Validation of Parametric Models in Microelectrode Recordings Acquired from Patients with Parkinson's Disease. Communications in Computer and Information Science, 2019, , 323-334.	0.4	0
17	Neuronal inhibition and synaptic plasticity of basal ganglia neurons in Parkinson's disease. Brain, 2018, 141, 177-190.	3.7	91
18	Predictors of deep brain stimulation outcome in tremor patients. Brain Stimulation, 2018, 11, 592-599.	0.7	43

WILLIAM D HUTCHISON

#	Article	IF	CITATIONS
19	Conflict monitoring mechanism at the single-neuron level in the human ventral anterior cingulate cortex. NeuroImage, 2018, 175, 45-55.	2.1	13
20	Gamma oscillations in the somatosensory thalamus of a patient with a phantom limb: case report. Journal of Neurosurgery, 2018, 129, 1048-1055.	0.9	4
21	Cunaniol-elicited seizures: Behavior characterization and electroencephalographic analyses. Toxicology and Applied Pharmacology, 2018, 360, 193-200.	1.3	19
22	Physiological mechanisms of thalamic ventral intermediate nucleus stimulation for tremor suppression. Brain, 2018, 141, 2142-2155.	3.7	96
23	What Have We Learned About Movement Disorders from Functional Neurosurgery?. Annual Review of Neuroscience, 2017, 40, 453-477.	5.0	21
24	Microelectrode recording findings within the tractography-defined ventral intermediate nucleus. Journal of Neurosurgery, 2017, 126, 1669-1675.	0.9	45
25	Modulation of serotonin dynamics in the dorsal raphe nucleus via high frequency medial prefrontal cortex stimulation. Neurobiology of Disease, 2016, 94, 129-138.	2.1	15
26	The Effect of General Anesthesia on the Microelectrode Recordings From Pallidal Neurons in Patients With Dystonia. Journal of Neurosurgical Anesthesiology, 2016, 28, 256-261.	0.6	20
27	Preliminary evidence for human globus pallidus pars interna neurons signaling reward and sensory stimuli. Neuroscience, 2016, 328, 30-39.	1.1	21
28	A brain network model explaining tremor in Parkinson's disease. Neurobiology of Disease, 2016, 85, 49-59.	2.1	56
29	The effect of dexmedetomidine on the firing properties of <scp>STN</scp> neurons in Parkinson's disease. European Journal of Neuroscience, 2015, 42, 2070-2077.	1.2	35
30	Highâ€frequency stimulation of the medial prefrontal cortex decreases cellular firing in the dorsal raphe. European Journal of Neuroscience, 2015, 41, 1219-1226.	1.2	29
31	Paired Pulse Depression in the Subcallosal Cingulate Region of Depression Patients. Biological Psychiatry, 2015, 78, e3-e4.	0.7	7
32	Chronic deep brain stimulation of the rat ventral medial prefrontal cortex disrupts hippocampal–prefrontal coherence. Experimental Neurology, 2015, 269, 1-7.	2.0	11
33	Serotonin/dopamine transporter ratio as a predictor of <scp>l</scp> -dopa–induced dyskinesia. Neurology, 2015, 85, 840-841.	1.5	2
34	Response of Human Thalamic Neurons to High-Frequency Stimulation. PLoS ONE, 2014, 9, e96026.	1.1	18
35	Neural overlap between resting state and self-relevant activity in human subcallosal cingulate cortex – Single unit recording in an intracranial study. Cortex, 2014, 60, 139-144.	1.1	17
36	Beta oscillatory neurons in the motor thalamus of movement disorder and pain patients. Experimental Neurology, 2014, 261, 782-790.	2.0	49

#	Article	IF	CITATIONS
37	Bilateral pallidal stimulation for sargoglycan epsilon negative myoclonus. Parkinsonism and Related Disorders, 2014, 20, 915-918.	1.1	17
38	Spatial extent of beta oscillatory activity in and between the subthalamic nucleus and substantia nigra pars reticulata of Parkinson's disease patients. Experimental Neurology, 2013, 245, 60-71.	2.0	40
39	Introduction to Festschrift/Special Issue: Normal and abnormal neuronal oscillations in sensorimotor pathways. Experimental Neurology, 2013, 245, 1-4.	2.0	2
40	Pallidal Deep Brain Stimulation for a Case of Hemidystonia Secondary to a Striatal Stroke. Stereotactic and Functional Neurosurgery, 2013, 91, 190-197.	0.8	17
41	High-frequency cortical activity associated with postischemic epileptiform discharges in an in vivo rat focal stroke model. Journal of Neurosurgery, 2013, 118, 1098-1106.	0.9	15
42	Modulation of Beta Oscillations in the Subthalamic Nucleus with Prosaccades and Antisaccades in Parkinson's Disease. Journal of Neuroscience, 2013, 33, 6895-6904.	1.7	20
43	Bilateral pallidal stimulation for Wilson's disease. Movement Disorders, 2013, 28, 1292-1295.	2.2	29
44	Frequency-dependent effects of electrical stimulation in the globus pallidus of dystonia patients. Journal of Neurophysiology, 2012, 108, 5-17.	0.9	59
45	Oscillatory activity in the globus pallidus internus: Comparison between Parkinson's disease and dystonia. Clinical Neurophysiology, 2012, 123, 358-368.	0.7	90
46	High-frequency microstimulation in human globus pallidus and substantia nigra. Experimental Brain Research, 2010, 205, 251-261.	0.7	63
47	Involvement of the human ventrolateral thalamus in the control of visually guided saccades. Brain Stimulation, 2010, 3, 226-229.	0.7	5
48	Basal ganglia physiology and deep brain stimulation. Movement Disorders, 2010, 25, S71-5.	2.2	27
49	Subthalamic Nucleus Deep Brain Stimulation Improves Saccades in Parkinson's Disease. Neuromodulation, 2010, 13, 17-25.	0.4	27
50	Microstimulation-induced inhibition as a tool to aid targeting the ventral border of the subthalamic nucleus. Journal of Neurosurgery, 2009, 111, 724-728.	0.9	22
51	Selective enhancement of rapid eye movement sleep by deep brain stimulation of the human pons. Annals of Neurology, 2009, 66, 110-114.	2.8	106
52	Enhanced synchronization of thalamic theta band local field potentials in patients with essential tremor. Experimental Neurology, 2009, 217, 171-176.	2.0	67
53	Pathological subthalamic nucleus oscillations in PD: Can they be the cause of bradykinesia and akinesia?. Experimental Neurology, 2009, 219, 58-61.	2.0	92
54	Dopamine-dependent high-frequency oscillatory activity in thalamus and subthalamic nucleus of patients with Parkinson's disease. NeuroReport, 2009, 20, 1549-1553.	0.6	26

WILLIAM D HUTCHISON

#	Article	IF	CITATIONS
55	Pedunculopontine nucleus microelectrode recordings in movement disorder patients. Experimental Brain Research, 2008, 188, 165-174.	0.7	104
56	Reply: The variability of levodopa response in Parkinson's disease: Is sensitization reversible?. Movement Disorders, 2008, 23, 925-925.	2.2	0
57	Neuronal Firing Rates and Patterns in the Globus Pallidus Internus of Patients With Cervical Dystonia Differ From Those With Parkinson's Disease. Journal of Neurophysiology, 2007, 98, 720-729.	0.9	129
58	DUAL MICROELECTRODE TECHNIQUE FOR DEEP BRAIN STEREOTACTIC SURGERY IN HUMANS. Operative Neurosurgery, 2007, 60, 277-284.	0.4	18
59	Saccade-related potentials recorded from human subthalamic nucleus. Clinical Neurophysiology, 2007, 118, 155-163.	0.7	31
60	Beta Oscillatory Activity in the Subthalamic Nucleus and Its Relation to Dopaminergic Response in Parkinson's Disease. Journal of Neurophysiology, 2006, 96, 3248-3256.	0.9	520
61	Pallidal deep brain stimulation influences both reflexive and voluntary saccades in Huntington's disease. Movement Disorders, 2005, 20, 371-377.	2.2	27
62	Eye movement-related responses of neurons in human subthalamic nucleus. Experimental Brain Research, 2005, 162, 357-365.	0.7	63
63	Firing rates of pallidal neurons are similar in Huntington's and Parkinson's disease patients. Experimental Brain Research, 2005, 166, 230-236.	0.7	72
64	Alterations in Globus Pallidus Internus Firing Patterns are Associated with Different Movement Disorders. , 2005, , 389-396.		0
65	Neuronal Oscillations in the Basal Ganglia and Movement Disorders: Evidence from Whole Animal and Human Recordings. Journal of Neuroscience, 2004, 24, 9240-9243.	1.7	258
66	Stimulation-induced inhibition of neuronal firing in human subthalamic nucleus. Experimental Brain Research, 2004, 156, 274-281.	0.7	272
67	Bilateral globus pallidus stimulation for Huntington's disease. Annals of Neurology, 2004, 56, 290-294.	2.8	207
68	Neuronal activity in the globus pallidus of multiple system atrophy patients. Movement Disorders, 2004, 19, 1485-1492.	2.2	10
69	Somatosensory evoked potentials (SEPs) recorded from deep brain stimulation (DBS) electrodes in the thalamus and subthalamic nucleus (STN). Clinical Neurophysiology, 2004, 115, 424-434.	0.7	52
70	Pallidal neuronal activity: Implications for models of dystonia. Annals of Neurology, 2003, 53, 480-488.	2.8	246
71	Movement-related neurons of the subthalamic nucleus in patients with Parkinson disease. Journal of Neurosurgery, 2002, 97, 1167-1172.	0.9	134
72	Dependence of subthalamic nucleus oscillations on movement and dopamine in Parkinson's disease. Brain, 2002, 125, 1196-1209.	3.7	645

5

WILLIAM D HUTCHISON

#	Article	IF	CITATIONS
73	Synchronized Neuronal Discharge in the Basal Ganglia of Parkinsonian Patients Is Limited to Oscillatory Activity. Journal of Neuroscience, 2002, 22, 2855-2861.	1.7	258
74	Microelectrode recordings in the pallidum. Movement Disorders, 2002, 17, S150-S154.	2.2	49
75	The Globus Pallidus, Deep Brain Stimulation, and Parkinson's Disease. Neuroscientist, 2002, 8, 284-290.	2.6	38
76	Lidocaine and muscimol microinjections in subthalamic nucleus reverse parkinsonian symptoms. Brain, 2001, 124, 2105-2118.	3.7	168
77	Human Anterior Cingulate Cortex Neurons Modulated by Attention-Demanding Tasks. Journal of Neurophysiology, 2000, 83, 3575-3577.	0.9	143
78	Long-Term Follow-up of Unilateral Pallidotomy in Advanced Parkinson's Disease. New England Journal of Medicine, 2000, 342, 1708-1714.	13.9	263
79	High-frequency Synchronization of Neuronal Activity in the Subthalamic Nucleus of Parkinsonian Patients with Limb Tremor. Journal of Neuroscience, 2000, 20, 7766-7775.	1.7	538
80	New developments in understanding the etiology of Parkinson's disease and in its treatment. Current Opinion in Neurobiology, 1998, 8, 783-790.	2.0	82
81	Pallidal Stimulation in Parkinson's Disease Patients with a Prior Unilateral Pallidotomy. Canadian Journal of Neurological Sciences, 1998, 25, 300-305.	0.3	74
82	Microelectrode Recordings Define the Ventral Posteromedial Pallidotomy Target. Stereotactic and Functional Neurosurgery, 1998, 71, 153-163.	0.8	27
83	Methods for microelectrode-guided posteroventral pallidotomy. Journal of Neurosurgery, 1996, 84, 194-202.	0.9	332
84	Effects of Ethanol Treatment and Withdrawal on Biosynthesis and Processing of Proopiomelanocortin by the Rat Neurointermediate Lobe*. Endocrinology, 1988, 122, 817-825.	1.4	42