Guo-Xing Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4246863/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Flexural strength enhancement of cement paste through monomer incorporation and in situ bond formation. Cement and Concrete Research, 2022, 152, 106675.	4.6	34
2	Reply to the â€~Comment on "Super-adsorbent hydrogel for removal of methylene blue dye from aqueous solutionâ€â€™ by H. N. Tran, <i>J. Mater. Chem. A</i> , 2022, 10 , DOI: 10.1039/C9TA11420C. Journal of Materials Chemistry A, 2022, 10, 6815-6815.	5.2	0
3	Cationic poly(diallyldimethylammonium chloride) based hydrogel for effective anionic dyes adsorption from aqueous solution. Reactive and Functional Polymers, 2022, 174, 105239.	2.0	11
4	Rotation improvement of vertical axis wind turbine by offsetting pitching angles and changing blade numbers. Energy, 2021, 215, 119177.	4.5	28
5	A flexible quasi-solid-state thermoelectrochemical cell with high stretchability as an energy-autonomous strain sensor. Materials Horizons, 2021, 8, 2750-2760.	6.4	73
6	An effective strategy for the preparation of a wide-temperature-range proton exchange membrane based on polybenzimidazoles and polyacrylamide hydrogels. Journal of Materials Chemistry A, 2021, 9, 3605-3615.	5.2	47
7	Printable and Recyclable Conductive Ink Based on a Liquid Metal with Excellent Surface Wettability for Flexible Electronics. ACS Applied Materials & Interfaces, 2021, 13, 7443-7452.	4.0	67
8	Design of High Strength and Lightweight Construction Composites Using Advanced Porous and Tough Cementitious Materials. Journal of Advanced Concrete Technology, 2021, 19, 240-247.	0.8	3
9	Enhancement of the Piezoelectric Property of Polyvinylidene Fluoride through Electroactive Phase Enrichment and the Application in Piezoelectric Generators. ACS Applied Electronic Materials, 2021, 3, 1804-1812.	2.0	20
10	Hydrolyzed Hydrogels with Super Stretchability, High Strength, and Fast Self-Recovery for Flexible Sensors. ACS Applied Materials & Interfaces, 2021, 13, 22774-22784.	4.0	40
11	Villi-like poly(acrylic acid) based hydrogel adsorbent with fast and highly efficient methylene blue removing ability. Journal of Colloid and Interface Science, 2021, 594, 54-63.	5.0	42
12	Regulation of the elasticity and temperature tolerance of polyacrylamide/Ca(OH)2 nanocomposite organogel using a two-component organic solvent. Polymer Testing, 2021, 99, 107018.	2.3	2
13	Construction of Stable Wideâ€Temperatureâ€Range Proton Exchange Membranes by Incorporating a Carbonized Metal–Organic Frame into Polybenzimidazoles and Polyacrylamide Hydrogels. Small, 2021, 17, e2103214.	5.2	27
14	Nature-inspired semi-IPN hydrogels with tunable mechanical properties and multi-responsiveness. New Journal of Chemistry, 2021, 45, 861-871.	1.4	5
15	A semi-interpenetrating network ionic composite hydrogel with low modulus, fast self-recoverability and high conductivity as flexible sensor. Carbohydrate Polymers, 2020, 248, 116797.	5.1	85
16	Water Transport Mechanisms of Poly(acrylic acid), Poly(vinyl alcohol), and Poly(ethylene glycol) in C–S–H Nanochannels: A Molecular Dynamics Study. Journal of Physical Chemistry B, 2020, 124, 6095-6104.	1.2	12
17	Effects of blade shape and its corresponding moment of inertia on self-starting and power extraction performance of the novel bowl-shaped floating straight-bladed vertical axis wind turbine. Sustainable Energy Technologies and Assessments, 2020, 38, 100648.	1.7	22
18	Polymer hydrogel crossâ€linked by inorganic nanoparticles for removing trace metal ions. Journal of Applied Polymer Science, 2020, 137, 49004.	1.3	3

Guo-Xing Sun

#	Article	IF	CITATIONS
19	Ultra-lightweight cement composites with excellent flexural strength, thermal insulation and water resistance achieved by establishing interpenetrating network. Construction and Building Materials, 2020, 250, 118923.	3.2	37
20	A dual-trigger-mode ionic hydrogel sensor for contact or contactless motion recognition. Materials Horizons, 2020, 7, 2673-2682.	6.4	30
21	Highly Dispersed Graphene Network Achieved by using a Nanoparticleâ€Crosslinked Polymer to Create a Sensitive Conductive Sensor. ChemElectroChem, 2019, 6, 5006-5013.	1.7	10
22	Tough physical hydrogels reinforced by hydrophobic association with remarkable mechanical property, rapid stimuli-responsiveness and fast self-recovery capability. European Polymer Journal, 2019, 120, 109278.	2.6	13
23	Highly efficient removal of trace metal ions by using poly(acrylic acid) hydrogel adsorbent. Materials and Design, 2019, 181, 107934.	3.3	64
24	Mechanically strong hydrogels achieved by designing homogeneous network structure. Materials and Design, 2019, 163, 107547.	3.3	36
25	Nonâ€Volatile Clycerin Gel Enhanced by Subâ€5 nm Particles with Super Elasticity, Recoverability, and High Temperature Resistance. Macromolecular Chemistry and Physics, 2019, 220, 1800464.	1.1	3
26	Recoverable hydrogel with high stretchability and toughness achieved by low-temperature hydration of Portland cement. Materials Chemistry Frontiers, 2018, 2, 2076-2080.	3.2	10
27	Super-adsorbent hydrogel for removal of methylene blue dye from aqueous solution. Journal of Materials Chemistry A, 2018, 6, 17612-17624.	5.2	256
28	Effects of foaming agent type on the workability, drying shrinkage, frost resistance and pore distribution of foamed concrete. Construction and Building Materials, 2018, 186, 833-839.	3.2	116
29	Highly Stretchable Self-Healing Nanocomposite Hydrogel Reinforced by 5 nm Particles. ES Materials & Manufacturing, 2018, , .	1.1	10
30	A novel microporous amorphous-ZnO@TiO ₂ /graphene ternary nanocomposite with enhanced photocatalytic activity. RSC Advances, 2017, 7, 36787-36792.	1.7	13
31	Mechanism of cement/carbon nanotube composites with enhanced mechanical properties achieved by interfacial strengthening. Construction and Building Materials, 2016, 115, 87-92.	3.2	64
32	Super stretchable hydrogel achieved by non-aggregated spherulites with diameters <5 nm. Nature Communications, 2016, 7, 12095.	5.8	109
33	Formation of banded and non-banded poly(l-lactic acid) spherulites during crystallization of films of poly(l-lactic acid)/poly(ethylene oxide) blends. Polymer, 2014, 55, 1829-1836.	1.8	25
34	Determination of adsorption mechanism of polycarboxylate-ether based superplasticizers using crystallization, thermal and mass spectrometry methods. RSC Advances, 2014, 4, 25479-25485.	1.7	27
35	The effects of the low-molecular-weight component on banded spherulites of poly(l-lactic acid). Colloid and Polymer Science, 2013, 291, 1495-1501.	1.0	13
36	DISPERSION OF PRISTINE MULTI-WALLED CARBON NANOTUBES IN COMMON ORGANIC SOLVENTS. Nano, 2010, 05, 103-109.	0.5	32