Wei Liu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4246738/wei-liu-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

189	30,673	56	175
papers	citations	h-index	g-index
197 ext. papers	42,358 ext. citations	5.7 avg, IF	7.62 L-index

#	Paper	IF	Citations
189	Pixel2Mesh: 3D Mesh Model Generation via Image Guided Deformation. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2021 , 43, 3600-3613	13.3	10
188	Generalizing Face Forgery Detection with High-frequency Features 2021,		24
187	Parser-Free Virtual Try-on via Distilling Appearance Flows 2021 ,		14
186	ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows 2021,		13
185	Disentangled Cycle Consistency for Highly-realistic Virtual Try-On 2021 ,		6
184	VideoMoCo: Contrastive Video Representation Learning with Temporally Adversarial Examples 2021 ,		23
183	Multiple object tracking: A literature review. <i>Artificial Intelligence</i> , 2021 , 293, 103448	3.6	70
182	Unsupervised Deep Representation Learning for Real-Time Tracking. <i>International Journal of Computer Vision</i> , 2021 , 129, 400-418	10.6	24
181	Hierarchical Long Short-Term Concurrent Memory for Human Interaction Recognition. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2021 , 43, 1110-1118	13.3	52
180	Anytime Recognition with Routing Convolutional Networks. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2021 , 43, 1875-1886	13.3	2
179	Fast Stochastic Ordinal Embedding With Variance Reduction and Adaptive Step Size. <i>IEEE Transactions on Knowledge and Data Engineering</i> , 2021 , 33, 2467-2478	4.2	O
178	Spatiotemporal Co-attention Recurrent Neural Networks for Human-Skeleton Motion Prediction. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2021 , PP,	13.3	43
177	Image-to-Video Generation via 3D Facial Dynamics. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2021 , 1-1	6.4	4
176	Image Defogging Quality Assessment: Real-World Database and Method. <i>IEEE Transactions on Image Processing</i> , 2021 , 30, 176-190	8.7	11
175	Joint Face Image Restoration and Frontalization for Recognition. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2021 , 1-1	6.4	7
174	Deep Camera-Aware Metric Learning for Person Reidentification. <i>Wireless Communications and Mobile Computing</i> , 2021 , 2021, 1-9	1.9	
173	Quantized Adam with Error Feedback. <i>ACM Transactions on Intelligent Systems and Technology</i> , 2021 , 12, 1-26	8	O

172	TSCDNet+: A highly robust substation anomaly detection method. Optik, 2021, 246, 167808	2.5	1
171	Beyond Brightening Low-light Images. International Journal of Computer Vision, 2021, 129, 1013-1037	10.6	30
170	Pyramid Architecture Search for Real-Time Image Deblurring 2021 ,		6
169	Semantic Conditioned Dynamic Modulation for Temporal Sentence Grounding in Videos. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2020 , PP,	13.3	13
168	Vulnerability vs. Reliability: Disentangled Adversarial Examples for Cross-Modal Learning 2020,		3
167	PointPWC-Net: Cost Volume on Point Clouds for (Self-)Supervised Scene Flow Estimation. <i>Lecture Notes in Computer Science</i> , 2020 , 88-107	0.9	17
166	Learning Modality Interaction for Temporal Sentence Localization and Event Captioning in Videos. <i>Lecture Notes in Computer Science</i> , 2020 , 333-351	0.9	12
165	Context-Gated Convolution. Lecture Notes in Computer Science, 2020, 701-718	0.9	9
164	Face Super-Resolution Guided by 3D Facial Priors. Lecture Notes in Computer Science, 2020, 763-780	0.9	9
163	Multi-modal sequence model with gated fully convolutional blocks for micro-video venue classification. <i>Multimedia Tools and Applications</i> , 2020 , 79, 6709-6726	2.5	5
162	Deblurring by Realistic Blurring 2020 ,		47
161	Central Similarity Quantization for Efficient Image and Video Retrieval 2020,		31
160	Progressive Multistage Learning for Discriminative Tracking. <i>IEEE Transactions on Cybernetics</i> , 2020 , PP,	10.2	2
159	Towards Photo-Realistic Virtual Try-On by Adaptively Generating<-Pareserving Image Content 2020,		32
158	MTL-NAS: Task-Agnostic Neural Architecture Search Towards General-Purpose Multi-Task Learning 2020 ,		13
157	Graph Convolutional Network Hashing. IEEE Transactions on Cybernetics, 2020, 50, 1460-1472	10.2	47
156	Tensor Robust Principal Component Analysis with a New Tensor Nuclear Norm. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2020 , 42, 925-938	13.3	228
155	End-to-End Active Object Tracking and Its Real-World Deployment via Reinforcement Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42, 1317-1332	13.3	34

154	Reconstruct and Represent Video Contents for Captioning via Reinforcement Learning. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2020 , 42, 3088-3101	13.3	18
153	. IEEE Transactions on Multimedia, 2020 , 22, 760-774	6.6	3
152	Bi-Real Net: Binarizing Deep Network Towards Real-Network Performance. <i>International Journal of Computer Vision</i> , 2020 , 128, 202-219	10.6	15
151	Temporally Coherent Video Harmonization Using Adversarial Networks. <i>IEEE Transactions on Image Processing</i> , 2020 , 29, 214-224	8.7	5
150	Matching Image and Sentence With Multi-Faceted Representations. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2019 , 1-1	6.4	7
149	Unsupervised Semantic-Preserving Adversarial Hashing for Image Search. <i>IEEE Transactions on Image Processing</i> , 2019 , 28, 4032-4044	8.7	100
148	Stacked Robust Adaptively Regularized Auto-Regressions for Domain Adaptation. <i>IEEE Transactions on Knowledge and Data Engineering</i> , 2019 , 31, 561-574	4.2	13
147	Deep Residual Equivariant Mapping for Multi-angle Face Recognition. <i>Lecture Notes in Computer Science</i> , 2019 , 145-154	0.9	1
146	Spatio-Temporal Video Re-Localization by Warp LSTM 2019 ,		12
145	Controllable Video Captioning With POS Sequence Guidance Based on Gated Fusion Network 2019 ,		44
144	Unsupervised Deep Tracking 2019 ,		133
143	Occlusion Robust Face Recognition Based on Mask Learning With Pairwise Differential Siamese Network 2019 ,		53
142	Learning Joint Gait Representation via Quintuplet Loss Minimization 2019,		22
141	Face Anti-Spoofing: Model Matters, so Does Data 2019 ,		65
140	MVF-Net: Multi-View 3D Face Morphable Model Regression 2019,		27
139	2019,		29
138	NDDR-CNN: Layerwise Feature Fusing in Multi-Task CNNs by Neural Discriminative Dimensionality Reduction 2019 ,		35
137	DistillHash: Unsupervised Deep Hashing by Distilling Data Pairs 2019 ,		36

136	Joint Representation and Estimator Learning for Facial Action Unit Intensity Estimation 2019,	10
135	Multi-Granularity Generator for Temporal Action Proposal 2019 ,	53
134	Self-Supervised Spatio-Temporal Representation Learning for Videos by Predicting Motion and Appearance Statistics 2019 ,	53
133	Residual Regression With Semantic Prior for Crowd Counting 2019,	40
132	Unsupervised Image Captioning 2019 ,	34
131	Exact Adversarial Attack to Image Captioning via Structured Output Learning With Latent Variables 2019 ,	16
130	Compressing Convolutional Neural Networks via Factorized Convolutional Filters 2019,	18
129	2019,	71
128	Efficient Decision-Based Black-Box Adversarial Attacks on Face Recognition 2019,	83
127	2019,	56
127	2019,	56 13
126	2019,	13
126	2019, Deep Spectral Clustering Using Dual Autoencoder Network 2019,	13 59
126 125 124	2019, Deep Spectral Clustering Using Dual Autoencoder Network 2019, A Sufficient Condition for Convergences of Adam and RMSProp 2019, Adversarial Spatio-Temporal Learning for Video Deblurring. IEEE Transactions on Image Processing,	13 59 70
126 125 124	2019, Deep Spectral Clustering Using Dual Autoencoder Network 2019, A Sufficient Condition for Convergences of Adam and RMSProp 2019, Adversarial Spatio-Temporal Learning for Video Deblurring. IEEE Transactions on Image Processing, 2019, 28, 291-301	13 59 70 64
126 125 124 123	2019, Deep Spectral Clustering Using Dual Autoencoder Network 2019, A Sufficient Condition for Convergences of Adam and RMSProp 2019, Adversarial Spatio-Temporal Learning for Video Deblurring. IEEE Transactions on Image Processing, 2019, 28, 291-301 Video co-segmentation based on directed graph. Multimedia Tools and Applications, 2019, 78, 10353-10373 A Deep Bayesian Tensor-Based System for Video Recommendation. ACM Transactions on	13 59 70 64 3

118	DeepProduct. <i>ACM Transactions on Multimedia Computing, Communications and Applications</i> , 2018 , 14, 1-18	3.4	13
117	Reversed Spectral Hashing. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2018 , 29, 2441	-2 1 4.9	14
116	Sub-Selective Quantization for Learning Binary Codes in Large-Scale Image Search. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2018 , 40, 1526-1532	13.3	9
115	A Personal Privacy Preserving Framework 2018 ,		6
114	Multi-modal self-paced learning for image classification. <i>Neurocomputing</i> , 2018 , 309, 134-144	5.4	12
113	Neural Compatibility Modeling with Attentive Knowledge Distillation 2018,		57
112	Long-Term Human Motion Prediction by Modeling Motion Context and Enhancing Motion Dynamics 2018 ,		36
111	Semantic Structure-based Unsupervised Deep Hashing 2018,		47
110	A Reinforced Topic-Aware Convolutional Sequence-to-Sequence Model for Abstractive Text Summarization 2018 ,		35
109	Incremental Multi-graph Matching via Diversity and Randomness Based Graph Clustering. <i>Lecture Notes in Computer Science</i> , 2018 , 142-158	0.9	5
108	Neural Stereoscopic Image Style Transfer. Lecture Notes in Computer Science, 2018, 56-71	0.9	9
107	Recurrent Fusion Network for Image Captioning. Lecture Notes in Computer Science, 2018, 510-526	0.9	68
106	Unsupervised Image-to-Image Translation with Stacked Cycle-Consistent Adversarial Networks. <i>Lecture Notes in Computer Science</i> , 2018 , 186-201	0.9	31
105	Modeling Varying Camera-IMU Time Offset in Optimization-Based Visual-Inertial Odometry. <i>Lecture Notes in Computer Science</i> , 2018 , 491-507	0.9	6
104	Super-Identity Convolutional Neural Network for Face Hallucination. <i>Lecture Notes in Computer Science</i> , 2018 , 196-211	0.9	48
103	Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images. <i>Lecture Notes in Computer Science</i> , 2018 , 55-71	0.9	208
102	Video Re-localization. Lecture Notes in Computer Science, 2018 , 55-70	0.9	20
101	Bi-Real Net: Enhancing the Performance of 1-Bit CNNs with Improved Representational Capability and Advanced Training Algorithm. <i>Lecture Notes in Computer Science</i> , 2018 , 747-763	0.9	96

(2017-2018)

100	Orthogonal Deep Features Decomposition for Age-Invariant Face Recognition. <i>Lecture Notes in Computer Science</i> , 2018 , 764-779	0.9	26
99	Deep Video Dehazing with Semantic Segmentation. IEEE Transactions on Image Processing, 2018,	8.7	70
98	Bidirectional Attentive Fusion with Context Gating for Dense Video Captioning 2018,		61
97	Self-Supervised Adversarial Hashing Networks for Cross-Modal Retrieval 2018,		144
96	Gated Fusion Network for Single Image Dehazing 2018 ,		298
95	Learning to Generate Time-Lapse Videos Using Multi-stage Dynamic Generative Adversarial Networks 2018 ,		47
94	Zero-Shot Visual Recognition Using Semantics-Preserving Adversarial Embedding Networks 2018,		84
93	Tagging Like Humans: Diverse and Distinct Image Annotation 2018,		28
92	CosFace: Large Margin Cosine Loss for Deep Face Recognition 2018,		631
91	Dual Skipping Networks 2018 ,		8
90	CNN in MRF: Video Object Segmentation via Inference in a CNN-Based Higher-Order Spatio-Temporal MRF 2018 ,		88
89	Regularizing RNNs for Caption Generation by Reconstructing the Past with the Present 2018,		31
88	Reconstruction Network for Video Captioning 2018,		103
87	Left-Right Comparative Recurrent Model for Stereo Matching 2018 ,		36
86	Fine-grained Video Attractiveness Prediction Using Multimodal Deep Learning on a Large Real-world Dataset 2018 ,		5
85	Knowledge transfer for spectral clustering. <i>Pattern Recognition</i> , 2018 , 81, 484-496	7.7	9
84	Shared Predictive Cross-Modal Deep Quantization. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2018 , 29, 5292-5303	10.3	90
83	Exploring Representativeness and Informativeness for Active Learning. <i>IEEE Transactions on Cybernetics</i> , 2017 , 47, 14-26	10.2	96

Theoretic Analysis and Extremely Easy Algorithms for Domain Adaptive Feature Learning 2017,

3

131

Discrete Collaborative Filtering 2016,

66

65

(2015-2016)

	. IEEE Transactions on Multimedia, 2016 , 18, 208-218	6.6	74
63	. Proceedings of the IEEE, 2016 , 104, 34-57	14.3	258
62	Tensor Robust Principal Component Analysis: Exact Recovery of Corrupted Low-Rank Tensors via Convex Optimization 2016 ,		197
61	Multi-Modal Curriculum Learning for Semi-Supervised Image Classification. <i>IEEE Transactions on Image Processing</i> , 2016 , 25, 3249-3260	8.7	175
60	Video Classification via Weakly Supervised Sequence Modeling. <i>Computer Vision and Image Understanding</i> , 2016 , 152, 79-87	4.3	10
59	. IEEE Transactions on Multimedia, 2016 , 18, 2161-2170	6.6	11
58	Multimedia Hashing and Networking. IEEE MultiMedia, 2016, 23, 75-79	2.1	14
57	Deep Learning Driven Visual Path Prediction From a Single Image. <i>IEEE Transactions on Image Processing</i> , 2016 , 25, 5892-5904	8.7	36
56	SSD: Single Shot MultiBox Detector. Lecture Notes in Computer Science, 2016, 21-37	0.9	5134
55	Rank Preserving Hashing for Rapid Image Search 2015 ,		11
54	Efficient robust conditional random fields. <i>IEEE Transactions on Image Processing</i> , 2015 , 24, 3124-36	8.7	14
		8.7	
54	Efficient robust conditional random fields. <i>IEEE Transactions on Image Processing</i> , 2015 , 24, 3124-36	8. ₇	14
54 53	Efficient robust conditional random fields. <i>IEEE Transactions on Image Processing</i> , 2015 , 24, 3124-36 An Efficient Semi-Supervised Clustering Algorithm with Sequential Constraints 2015 , SIRF: Simultaneous Satellite Image Registration and Fusion in a Unified Framework. <i>IEEE</i>		14
545352	Efficient robust conditional random fields. <i>IEEE Transactions on Image Processing</i> , 2015 , 24, 3124-36 An Efficient Semi-Supervised Clustering Algorithm with Sequential Constraints 2015 , SIRF: Simultaneous Satellite Image Registration and Fusion in a Unified Framework. <i>IEEE Transactions on Image Processing</i> , 2015 , 24, 4213-24 Human Action Recognition in Unconstrained Videos by Explicit Motion Modeling. <i>IEEE Transactions</i>	8.7	14 16 87
54535251	Efficient robust conditional random fields. <i>IEEE Transactions on Image Processing</i> , 2015 , 24, 3124-36 An Efficient Semi-Supervised Clustering Algorithm with Sequential Constraints 2015 , SIRF: Simultaneous Satellite Image Registration and Fusion in a Unified Framework. <i>IEEE Transactions on Image Processing</i> , 2015 , 24, 4213-24 Human Action Recognition in Unconstrained Videos by Explicit Motion Modeling. <i>IEEE Transactions on Image Processing</i> , 2015 , 24, 3781-95 When Location Meets Social Multimedia. <i>ACM Transactions on Intelligent Systems and Technology</i> ,	8. ₇	14 16 87 51
 54 53 52 51 50 	Efficient robust conditional random fields. <i>IEEE Transactions on Image Processing</i> , 2015 , 24, 3124-36 An Efficient Semi-Supervised Clustering Algorithm with Sequential Constraints 2015 , SIRF: Simultaneous Satellite Image Registration and Fusion in a Unified Framework. <i>IEEE Transactions on Image Processing</i> , 2015 , 24, 4213-24 Human Action Recognition in Unconstrained Videos by Explicit Motion Modeling. <i>IEEE Transactions on Image Processing</i> , 2015 , 24, 3781-95 When Location Meets Social Multimedia. <i>ACM Transactions on Intelligent Systems and Technology</i> , 2015 , 6, 1-18 Dictionary Pair Learning on Grassmann Manifolds for Image Denoising. <i>IEEE Transactions on Image</i>	8.7 8.7 8	14 16 87 51 32

46	Towards large-scale histopathological image analysis: hashing-based image retrieval. <i>IEEE Transactions on Medical Imaging</i> , 2015 , 34, 496-506	11.7	142
45	Auxiliary Training Information Assisted Visual Recognition. <i>IPSJ Transactions on Computer Vision and Applications</i> , 2015 , 7, 138-150	3.3	10
44	Top Rank Supervised Binary Coding for Visual Search 2015,		37
43	Learning Binary Codes for Maximum Inner Product Search 2015,		81
42	Discrete hyper-graph matching 2015 ,		40
41	Saliency propagation from simple to difficult 2015 ,		87
40	Understanding image structure via hierarchical shape parsing 2015,		3
39	Supervised Discrete Hashing 2015 ,		592
38	Localizing web videos using social images. <i>Information Sciences</i> , 2015 , 302, 122-131	7.7	5
37	Can Visual Recognition Benefit from Auxiliary Information in Training?. <i>Lecture Notes in Computer Science</i> , 2015 , 65-80	0.9	8
36	Video De-Fencing. IEEE Transactions on Circuits and Systems for Video Technology, 2014 , 24, 1111-1121	6.4	19
35	Mining histopathological images via hashing-based scalable image retrieval 2014,		11
34	Scalable mammogram retrieval using Anchor Graph Hashing 2014 ,		16
33	Weakly supervised visual dictionary learning by harnessing image attributes. <i>IEEE Transactions on Image Processing</i> , 2014 , 23, 5400-11	8.7	30
32	Image Fusion with Local Spectral Consistency and Dynamic Gradient Sparsity 2014 ,		70
31	Unsupervised One-Class Learning for Automatic Outlier Removal 2014 ,		47
30	Two-Stage Hashing for Fast Document Retrieval 2014 ,		9
29	Scalable histopathological image analysis via active learning. <i>Lecture Notes in Computer Science</i> , 2014 , 17, 369-76	0.9	11

(2011-2014)

28	Mining histopathological images via composite hashing and online learning. <i>Lecture Notes in Computer Science</i> , 2014 , 17, 479-86	12
27	Graduated Consistency-Regularized Optimization for Multi-graph Matching. <i>Lecture Notes in Computer Science</i> , 2014 , 407-422	25
26	Mining spatiotemporal video patterns towards robust action retrieval. <i>Neurocomputing</i> , 2013 , 105, 61-69 _{.4}	9
25	Nonnegative local coordinate factorization for image representation. <i>IEEE Transactions on Image Processing</i> , 2013 , 22, 969-79	67
24	Face Recognition via Archetype Hull Ranking 2013 ,	10
23	Weakly supervised codebook learning by iterative label propagation with graph quantization. Signal Processing, 2013 , 93, 2274-2283 4.4	
22	Visual Reranking through Weakly Supervised Multi-graph Learning 2013,	52
21	Learning Hash Codes with Listwise Supervision 2013 ,	81
20	Query-dependent visual dictionary adaptation for image reranking 2013,	2
19	Robust and Scalable Graph-Based Semisupervised Learning. <i>Proceedings of the IEEE</i> , 2012 , 100, 2624-263& _{4.3}	124
18	Task-dependent visual-codebook compression. <i>IEEE Transactions on Image Processing</i> , 2012 , 21, 2282-938.7	81
17	Trajectory-Based Modeling of Human Actions with Motion Reference Points. <i>Lecture Notes in Computer Science</i> , 2012 , 425-438	72
16	Optimal semi-supervised metric learning for image retrieval 2012,	6
15	Supervised hashing with kernels 2012 ,	132
14	Weakly supervised topic grouping of YouTube search results 2012 ,	1
13	Distribution Calibration in Riemannian Symmetric Space. <i>IEEE Transactions on Systems, Man, and Cybernetics</i> , 2011 , 41, 921-30	5
12	Noise resistant graph ranking for improved web image search 2011 ,	41
11	Efficient manifold ranking for image retrieval 2011 ,	75

10	Semi-supervised distance metric learning for collaborative image retrieval and clustering. <i>ACM Transactions on Multimedia Computing, Communications and Applications</i> , 2010 , 6, 1-26	3.4	94
9	Scalable similarity search with optimized kernel hashing 2010 ,		84
8	Semi-supervised sparse metric learning using alternating linearization optimization 2010,		37
7	Semi-supervised distance metric learning for Collaborative Image Retrieval 2008,		77
6	Relevance aggregation projections for image retrieval 2008,		3
5	Spatio-temporal Embedding for Statistical Face Recognition from Video. <i>Lecture Notes in Computer Science</i> , 2006 , 374-388	0.9	9
4	Null Space Approach of Fisher Discriminant Analysis for Face Recognition. <i>Lecture Notes in Computer Science</i> , 2004 , 32-44	0.9	38
3	Learning Distance Metrics with Contextual Constraints for Image Retrieval		134
2	Robust multi-class transductive learning with graphs		2
1	Beyond Monocular Deraining: Parallel Stereo Deraining Network Via Semantic Prior. <i>International Journal of Computer Vision</i> ,	10.6	2